Yoga-mgn.ru

Строительный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сварка на электронно-лучевых сварочных установках: плюсы и минусы

Учебные материалы

При электронно-лучевой и лазерной сварке используют лучевые источники энергии. При ЭЛС носителем энергии являются электроны, при лазерной – фотоны.

Характерным признаком для лучевых источников является высокая плотность энергии в пятне нагрева. Концентрация потока энергии достигается специальными фокусирующими устройствами. Площадь нагрева может быть по сравнению с дугой в 1000 раз меньше при плотности энергии в 1000 раз большей. При использовании фотонного луча эта разница еще значительнее.

Высокая плотность энергии в малом пятне нагрева определяет основные преимущества при сварке электронным лучом и лазером: – выгодная форма проплавления (ножевая, кинжальная); – возможность получения прецизионных соединений; – сварные соединения получаются с благоприятной структурой и свойствами, особенно, из высокопрочных сталей с пониженной трещиностойкостью.

Схемы процесса, преимущества, недостатки и область применения

Электронно-лучевая сварка – сварка плавлением, при которой нагрев металла осуществляется быстродвижущимися в вакууме электронами. Электронный луч создается в электронной пушке с высоковольтным источником постоянного тока. Вакуум порядка до 133·10 –4 Па обеспечивается вакуумной насосной системой.

Основные параметры режима ЭЛС сила тока, напряжение электронного луча, скорость сварки. Мощность источников энергии составляет от 2 кВт до 60 кВт, позволяющие выполнять сварку при использовании малой мощности изделий микроэлектроники, при больших мощностях – для сварки больших толщин до 200…500 мм.

Лазерная сварка – для местного расплавления соединяемых частей используют энергию светового луча, полученного от оптического квантового генератора-лазера. Фотон представляет собой элементарную частицу, порцию света, обладающую нулевой массой покоя и движущуюся со скоростью, равной скорости света в вакууме.

Преимущества лазерного луча являются возможность передачи энергии на большие расстояния неконтактным способом, сварка через прозрачные оболочки, так как для световых лучей прозрачные среды не служат преградами, получение качественных соединений на металлах, особо чувствительных к длительному действию теплоты. Сварка выполняется на воздухе, в защитной атмосфере и вакууме. Основной недостаток – низкие значения КПД установок, высокая стоимость и недостаточная мощность серийного оборудования. ЛС применяется для соединения мелких деталей.

В основе действия оптических квантовых генераторов и усилителей лежит индуцированное излучение возбужденных атомов, т.е. атомов, в которых значительное число электронов переведено на верхний уровень. Такое состояние называют состоянием с инверсной заселенностью уровней. Оно может быть создано, например, внешним источником излучения с определенной длиной волны. Это состояние неустойчиво и через некоторый промежуток времени возбужденный атом может спонтанно перейти в равновесное состояние и излучать энергию в виде фотонов. Пока атом находится в возбужденном состоянии, его можно стимулировать, т.е. побудить испускать энергию под воздействием внешнего фотона. Такое излучение называется индуцированным и используется в квантовых усилителях. Излучателем служит рубин, силикатные или фосфатные стекла с неодимом, иттрид-алюминиевый и алюмонатриевый гранат – с неодимом и др.

Для сварки металлов используются твердотельные и газовые лазеры.

Твердотельные лазеры имеют средние мощности излучения достигающие лишь до сотен ватт. Ограничения по мощности связаны с малыми линейными размерами искусственно выращиваемых кристаллов и их низкой теплопроводностью, что затрудняет их охлаждение в лазерных установках.

Газовые лазеры, в которых в качестве активной среды используется диоксид углерода СО2, способны развивать в настоящее время среднюю мощность от нескольких сотен ватт до десятков киловатт в непрерывном и импульсно–периодическом режимах работы.

Особенностью лазерного излучения является возможность легкой его транспортировки. С помощью зеркальных оптических систем лазерный луч можно направлять в труднодоступные места, подавать на значительные расстояния, одновременно или последовательно использовать на нескольких рабочих местах.

В отличие от электронного луча, дуги и плазмы на лазерный луч не влияют магнитные поля свариваемых деталей и технологической оснастки, что позволяет получать устойчивое качественное формирование сварного шва по всей длине.

По сравнению с дуговой сваркой плавлением лазерная имеет следующие преимущества:

  1. За счет высокой концентрации энергии и малого пятна нагрева объем сварочной ванны в несколько раз меньше. Этот фактор положительно сказывается на целом ряде характеристик сварного соединения: снижение ширины шва в 2…5 раз, ограничивается тепловое воздействие на свариваемый металл, получение швов с глубоким проплавлением, что дает возможность уменьшить деформации деталей до 10 раз (позволяет уменьшить размеры допусков, экономия времени на правку, исключение механической обработки после сварки); малый объем расплавленного металла и специфическая форма шва улучшает условия кристаллизации сварных швов.
  2. Острая фокусировка луча и возможность передачи его на значительные расстояния позволяет вести сварку в труднодоступных местах, например, в углублениях гофрированных конструкций, внутренних полостей и др.
  3. Жесткий термический цикл с высокими скоростями нагрева и охлаждения дает возможность существенно сократить зону термического влияния. Это позволяет снизить эффект фазовых и структурных превращений в околошовной зоне, приводящих к разупрочнению; трещинообразованию, снижению коррозионной стойкости.
  4. Процесс сварки осуществляется в атмосфере воздуха, либо в среде защитных нейтральных газов (Аr, Ge), в среде углекислого газа (СО2) и др. Поэтому создается возможность сварки для соединения элементов конструкций любых габаритов.

Однако, при сварке с присадочной проволоки (для легирования или снижения требований при сборке) необходимо обеспечивать точную с большой скоростью подачу проволоки Ø 1,0…1,5 мм в зону плавления шириной 1,0…2,0 мм. К.п.д. лазерных установок не превышает 10%.

Преимущества и недостатки холодной сварки

Как и любой другой способ сварки, холодная сварка имеет свои преимущества и недостатки.

Преимущества холодной сварки

Холодная сварка металлов обладает рядом преимуществ, которые заметно отличают ее от всех остальных видов сварки.

Наиболее важным и отличительным преимуществом холодной сварки является отсутствие нагрева соединяемых металлов, что позволяет:

  • сваривать термически разупрочняемые металлы без снижения механических свойств металла вблизи зоны сварного шва;
  • сваривать электрические провода, имеющие изоляционные покрытия, либо без удаления последних (в случае эмалированных покрытий), либо при удалении на небольшом участке длины провода (в других случаях);
  • вести процесс сварки в огне- и взрывоопасных средах;
  • герметизировать корпуса приборов, банки, контейнеры, ампулы и другие емкости, нагрев которых недопустим.

Другими достоинствами холодной сварки являются малая энергоемкость процесса, гигиеничность, высокая производительность, простота процесса и оборудования, возможность механизации и автоматизации процесса.

Оборудование для холодной сварки значительно проще в эксплуатации любых машин и установок для дуговой, контактной, электронно-лучевой, плазменной, лазерной и других видов сварки.

Как показал многолетний опыт внедрения холодной сварки, ее успешно осуществляют операторы — сварщики невысокой квалификации. По сравнению со всеми остальными видами сварки, а также пайкой холодная сварка наиболее экономичная. При ее осуществлении отсутствуют газовые выделения, брызги расплавленного металла, световое излучение, шум. Качество сварки не зависит от скорости приложения внешнего усилия, поэтому процесс можно вести быстро. Это открывает возможности создания высокопроизводительного оборудования. Основные параметры холодной сварки легко программируются, что позволяет создавать машины — полуавтоматы и автоматы, пригодные для работы в автоматических линиях. Прочность зоны сварного соединения увеличивается за счет наклепа металла в процессе пластической деформации. Например, при стыковой сварке прочность доброкачественно сваренного стыка при растяжении всегда выше прочности основного металла.

Переходное электрическое сопротивление в соединении практически отсутствует, что обеспечивает стойкость и надежность контакта между сваренными металлами.

При холодной сварке надежно соединяют разноименные металлы, например алюминий с медью, без образования в стыке хрупкой интерметаллидной прослойки, присущей соединениям этих металлов, полученных сваркой с нагревом. Замена одних деталей, подлежащих холодной сварке, другими требует, как правило, переналадки оборудования и замены оснастки.

В связи с указанными особенностями холодную сварку наиболее рационально применять в крупносерийном или массовом производстве однотипных деталей.

Недостатки холодной сварки

Основным недостатком холодной сварки является большая вынужденная деформация свариваемых деталей, достигающая для пластичных материалов 60-70 %.

В условиях холодной сварки металл сварного соединения деформационно упрочнен, а вынужденная пластическая деформация в зависимости от подготовки поверхностей находится в пределах 50-80 %. Для снижения вынужденной деформации при холодной сварке используют несколько приемов:

  • повышают класс точности сопрягаемых поверхностей и чистоту обработки вплоть до полировки;
  • применяют предварительный подогрев деталей до 300°С или нагрев сжимающих пуансонов до 400°С;
  • повышают интенсивность сжатия вплоть до ударной нагрузки;
  • применяют схемы предварительного обжатия детали вокруг силового пуансона что позволяет довести вынужденную деформацию до 10 %;
  • применяют промежуточные пластичные прослойки толщиной 2-5 мм, что позволяет сваривать непластичные материалы стыковой сваркой;
  • производят сварку в вакууме.
Читать еще:  Сварочные аппараты MasterTig MLS 2300/3003 ACDC

Также к недостаткам холодной сварки стоит отнести ограничение в форме и размерах деталей, небольшой диапазон свариваемых металлов, малая универсальность оборудования.

Кто такой сварщик — подробный разбор профессии

Привет друзья! Сегодня на обзоре одна из уважаемых и нужных профессий, которую мы просто не могли обойти вниманием — сварщик. Разберем чем занимаются сварщики, какие бывают типы сварки, плюсы и минусы у этой работы, а так же как стать сварщиком. Поехали!

  1. Кто такой сварщик?
  2. Виды сварщиков
  3. Газорезчик
  4. Газосварщик
  5. Контролер сварочных работ
  6. Наладчик сварочного и газоплазморезательного оборудования
  7. Оператор лазерных установок
  8. Оператор проекционной аппаратуры и газорезательных машин
  9. Сварщик на диффузионно-сварочных установках
  10. Сварщик на машинах контактной (прессовой) сварки
  11. Сварщик на электронно-лучевых сварочных установках
  12. Сварщик термитной сварки
  13. Электровибронаплавщик
  14. Электрогазосварщик
  15. Электросварщик на автоматических и полуавтоматических машинах
  16. Электросварщик ручной сварки
  17. Плюсы и минусы работы сварщиком
  18. Плюсы
  19. Минусы
  20. Обучение на сварщика
  21. Зарплата сварщика

Кто такой сварщик?

Сварщик – это специалист по работе с металлом, который связывает металлические детали в сложную конструкцию, используя электрическую сварку.

Профессия появилась в 1802 году. Тогда отечественный научный деятель Василий Петров совершил открытие в виде эффекта электрической дуги . Между угольными электродами создавали высокую температуру, благодаря которой плавится металл. Труды ученого начали использовать на практике. Так возникла электрическая сварка.

Василий Петров и его «Известие о гальвани-вольтовских опытах»

К специальности относится деятельность на сварочных производствах. Сотрудники соединяют между собой металлические конструкции, изделия, емкости, детали и трубопроводы, отличающиеся по виду, составу, предназначению и уровню сложности.

Главные инструменты сварщика — Электрододержатель, щитки, перчатки

Профессионализм работника влияет на качество выполненной задачи.

Смотрите так же на «КтоТакой.com» — Кто такой слесарь — все, что нужно знать о профессии

Виды сварщиков

Выделяется несколько видов сварщиков.

Газорезчик

Выполняет кислородную резку, а также применяет бензорезательные и керосинорезательные аппараты. Подготавливает отливок, защищает его от пригара, заряжает и разряжает газогенераторную установку.


Газосварщик

Осуществляет газовую сварку сложных элементов, узлов, конструкций. Использует высокоуглеродистые, легированные, коррозионностойкие стали, чугун, цветные металлы, сплавы. Работает с динамическими, вибрационными нагрузками, высоким давлением.


Контролер сварочных работ

Контролирует качество выполнения задания, принимает сборку сварочных соединений, выполненных из малоуглеродистых сталей. Проверяет чистоту поверхности, геометрию кромок, соответствие изделия техническим условиям.

Наладчик сварочного и газоплазморезательного оборудования

Налаживает полуавтоматическое оборудование для дуговых и контактных работ, резаки для кислородной резки, приспособления для металлов.

Читайте так же на «KtoTakoi.com» — Кто такой механик — особенности, плюсы и минусы работы

Оператор лазерных установок

С пульта управляет процессом лазерной сварки, термообработки. Подготавливает установки к выполнению заданий, обслуживает устройства высокого напряжения. Ведет журнал учета, где фиксирует функционирование всех установок.


Оператор проекционной аппаратуры и газорезательных машин

Используя пульты управления, готовит проекционную аппаратуру вместе с газорезательными машинами к работе, проверяет их исправность. Выявляет и устраняет поломку.


Сварщик на диффузионно-сварочных установках

Работает с многокамерными диффузно-сварочными установками. Варит дорогие узлы, детали. Сочетает металл со сплавами, испытывает материалы. Осуществляет сварку в печах конструкций типа сотовых панелей.

Сварщик на машинах контактной (прессовой) сварки

В ходе работы использует точечные и контактные машины. Изготавливает изделия, узлы, конструкции, трубопроводы, емкости из стали, сплава, цветных металлов, а также неметаллических материалов.


Сварщик на электронно-лучевых сварочных установках

В вакууме производит электронно-лучевую сварку. Из спецсплавов изготавливает дорогостоящие и сложные детали, узлы. Варит изделия, для которых характерна ограниченная степень нагрева, маленькие конструкции.


Сварщик термитной сварки

Осуществляет термитную сварку различной степени сложности. Устанавливает и выверяет пресс, правит свариваемые поверхности, устанавливает и обмазывает формы, набивает их. Готовит смесь для тиглей, обжигает их.


Электровибронаплавщик

Делает вибродуговую наплавку на деталях низкого и среднего уровня сложности. Устанавливает режим наплавки, регулирует силу тока, напряжение.

Смотрите так же в журнале «КтоТакой» — Кто такой электрик — все тонкости профессии


Электрогазосварщик

Специализируется на дуговой, плазменной сварке в защитных газах, газовой работе со сложными аппаратами, деталями и трубопроводами. Применяет сталь, чугун, цветной металл, сплав.

Электросварщик на автоматических и полуавтоматических машинах

Производит автоматические и полуавтоматические манипуляции с многоэлектродной, многодуговой, телевизионной и фотоэлектронной аппаратурой. Работает с легированной сталью и титановым сплавом.


Электросварщик ручной сварки

Вручную выполняет газоэлектрические, дуговые задачи. Специализируется на строительных и технологических конструкциях, обладающих непростой конфигурацией.

Плюсы и минусы работы сварщиком

У работы по этой специальности есть свои плюсы и минусы. Они помогают человеку выбрать дальнейшую карьеру.

Плюсы

  • специалисты востребованы на современном рынке труда, они не останутся без дохода;
  • у сотрудников с опытом есть возможность получать высокую заработную плату;
  • перспектива продвижения по карьерной лестнице при накоплении стажа;
  • ранний выход на пенсию, выплаты в достойном объеме.

Минусы

  • работа в тяжелых условиях, зачастую в экстремальных ситуациях: на большой высоте, при воздействии природных факторов;
  • ультрафиолетовое, инфракрасное излучение создает повышенную нагрузку на органы зрения, что может привести к электроофтальмии;
  • появляются иные заболевания, когда человек вдыхает производственную пыль: пневмокониоз, пылевой бронхит, бронхиальная астма, силикоз;
  • большая ответственность. Небольшой просчет препятствует успешной реализации всего проекта;
  • большие физические нагрузки. Весь день приходится быть на ногах, переносить тяжелые металлические предметы, находиться на высоте в неудобном положении.

Обучение на сварщика

Образование предоставляют профессионально-технические училища и колледжи. Срок обучения составляет 3 года при поступлении после 9 класса и 2 года при поступлении после окончания 11 класса.

  • Колледж архитектуры, дизайна и реинжиниринга №26 – отделение «Промышленное и гражданское строительство. Технология эксплуатации»;
  • Московский автомобильно-дорожный колледж им. А.А. Николаева – направление «Строительство и эксплуатация инженерных сооружений»;
  • Московский колледж архитектуры и градостроительства – направления «Строительство и эксплуатация зданий и сооружений», «Строительство и эксплуатация инженерных сооружений»;
  • Колледж автомобильного транспорта №9 – направление «Техническое обслуживание и ремонт двигателей, систем и агрегатов автомобилей»;
  • Колледж архитектуры и строительства №7 – направление «Строительство и эксплуатация зданий и сооружений»;
  • Омский промышленно-экономический колледж – направление «Электросварочные и газосварочные работы»;
  • Новосибирский технический колледж им. А.И. Покрышкина – квалификация «Электросварщик ручной дуговой сварки, газосварщик, сварщик на автоматических и полуавтоматических машинах».

Справка. Некоторые компании не требует образование, а сами обучают во время испытательного срока.

Зарплата сварщика

Заработная плата в Москве и остальных городах России отличается. Она зависит от навыка и опыта человека, от места работы.

Средняя зарплата в Москве составляет 60000 рублей.

Средняя ЗП в других регионах – 40000 рублей.

Профессия сварщика сложная и ответственная. Она требует особых навыков, умений и соблюдения техники безопасности. Но специалисты из этой области остаются востребованы по сей день.

Лазерная сварка. Общая информация.

Лазерная сварка — технологический процесс получения неразъемного соед инения частей изделия путем местного расплавления металлов посредством нагрева по примыкающим поверхностям.

Источником нагрева металла является излучение лазера. Когда лазерный луч попадает на металл, энергия излучения поглощается, металл нагревается и плавится. В результате такого плавления и последующей кристаллизации возникает прочное сцепление, которое называется сварной шов. Такое сцепление основано на межатомном взаимодействии в металле.

Таким образом, лазерная сварка относится к методам сварки плавлением.

Как и любой технологический процесс лазерная сварка имеет свои преимущества и недостатки. К основным преимуществам лазерной сварки можно отнести: локальность обработки материала, высокая производительность, технологическая гибкость и удобство.

Локальность обработки материала

В локальности обработки заключается ключевое преимущество лазерной сварки. Лазерный луч можно сфокусировать в пятно диаметром до 0,1 мм. В таком маленьком пятне может концентрироваться высокая энергия в очень небольшой промежуток времени. Другими словами, при высокой плотности мощности излучения и коротком времени облучения металл нагревается только в зоне лазерного излучения. Это существенно уменьшает объем сварочной ванны (место плавления металла при нагреве), что позволяет делать сварные швы и точки значительно меньше по размеру (ширина шва или диаметр точки), но с большей глубиной проплавления, чем при при помощи других технологий сварки металлов (дуговая и контактная сварка).

Читать еще:  Сварка плавящимся электродом в среде защитного газа. Оборудование

Кроме того, небольшой объем сварочной ванны, небольшая ширина шва и относительно большая глубина шва, а также жесткий термический цикл с высокими скоростями нагрева и охлаждения дает возможность при лазерной сварке уменьшить зону термического влияния и, следовательно, снизить деформации деталей в целом и снизить эффект фазовых и структурных превращений в околошовной зоне, приводящих к разупрочнению материала, трещинообразованию и т.п.

Также малый объем сварочной ванны и специфическая для лазерной сварки форма шва улучшают условия кристаллизации расплавленного металла и, следовательно, улучшают прочность сварных соединений.

Таким образом, преимущество лазерной сварки в локальности обработки материала позволяет:

  • проектировать детали меньшего размера, расширить ассортимент деталей со сварным соединением, учитывая исключительно маленький сварной шов при лазерной сварке;
  • обрабатывать детали миниатюрного размера;
  • упростить оснастку и технологию сварки некоторых деталей;
  • осуществлять сварку в труднодоступных местах, например в углублениях гофрированных конструкций и т.п.;
  • экономить металлы, сварочные материалы;
  • лазерная сварка практически исключает необходимость обработки сварного шва.
Высокая производительность

Производительность процесса сварки определяется скоростью его проведения. Лазерная сварка позволяет увеличить скорость сварки в 10-15 раз по сравнению с традиционными методами сварки плавлением (например, дуговая сварка).Так лазерная сварка непрерывным излучением может происходить со скоростями до 10 м/мин. Время получения одной точки при импульсной лазерной сварке может составлять 10 -2 — 10 -3 с, что на порядок быстрее, чем, например, при контактной сварке.

Технологическая гибкость и удобство

Технология лазерной сварки обладает гибкостью и удобством применения.

Во-первых, оборудование для лазерной сварки легко поддается автоматизации и роботизации. Лазерную сварку можно осуществлять в различных пространственных положениях. Возможна сварка как с перемещением изделия под лазерным лучом, так и с перемещением лазерного луча (лазерной сварочной головки) над и вокруг неподвижного изделия. Возможность передавать лазерное излучение по световоду (кварцевое волокно, Nd:YAG лазеры, волоконные лазеры) позволяет создавать более компактные сварочные головки, доставлять излучение в труднодоступные места и увеличивать пространство перемещения сварочной головки. В целом лазерное оборудование компактнее оборудования, основанного на традиционных методах сварки.

Во-вторых, для осуществления лазерной сварки не требуется обязательного наличия вакуумных камер или камер с контролируемой атмосферой, необходимых, например, для электронно-лучевой сварки, которая во многом может заменить лазерную сварку. Отсутствие таких камер снимает ограничение на размер свариваемых деталей.

В-третьих, лазерную сварку можно проводить не только в труднодоступных местах, но и через прозрачные среды в замкнутых объемах, что связано со спецификой лазерного излучения.

В-четвертых, лазерное излучение позволяет обрабатывать металлы, которые с трудом поддаются обработке обычными методами сварки. Например, феромагнитные стали с трудом поддаются электронно-лучевой сварке из-за отклонения электронного луча магнитным поле от стыка соединяемых деталей.

В-пятых, можно говорить о чистоте процесса лазерной сварки. Например, отсутствие электрода, близко расположенного к поверхности свариваемых деталей и поверхности сварного шва, исключает попадание в нее инородных материалов, что имеет место при дуговой сварке.

Говоря о недостатках технологии лазерной сварки, можно выделить следующие моменты.

Стоимость оборудования для лазерной сварки и технологической оснастки

Установка для лазерной сварки — сложный прибор, состоящий из нескольких технических систем (лазер, оптическая система, система перемещения и т.п.). Независимо от уровня развития технологии его цена будет значительно превышать стоимость оборудования, основанного на традиционных методах сварки.

Невысокая энергетическая эффективность лазерной сварки

КПД лазерных установок для сварки в силу технических особенностей лазеров редко когда превышает 10 %.

Сложность в обслуживании оборудования

Как говорилось выше, лазер — это сложный прибор, его обслуживание требует высокий уровень технической подготовки персонала.

При написании статьи использовались следующие материалы:
1. Григорьянц А.Г., Шиганов И.Н., Мисюров А.И. Технологические процессы лазерной обработки:
Учеб. пособие для вузов/под ред. А.Г. Григорьянца. — М.: Изд-во МГТУ им Н.Э. Баумана, 2006
2. Айхлер Ю., Айхлер Г.И. Лазеры. Исполнение, управление, применение Москва: Техносфера, 2012

И швы крепки, и пушки наши быстры: электронно-лучевая сварка

Каких только металлов нет в мире: множество сталей, алюминиевые сплавы, цветные металлы, чугун и т.д. С одними работать легко, с другими – очень сложно. А есть металлы, которые вообще не поддаются обычной сварке: они чрезвычайно активны химически и к тому же имеют очень высокую температуру плавления.

Их немного, и они довольно редкие: вольфрам, цирконий, молибден, тантал. Но их немногочисленность вовсе не означает, что с ними можно не работать. Нестандартным металлам – нестандартная технология. Это электронно-лучевая сварка с ее знаменитой электронной пушкой.

  1. Технология высокого полета: физика ЭЛС
  2. Плюсы и минусы ЭЛС
  3. Как это делается: технология ЭЛС
  4. Не будет оборудования, не будет ЭЛС
  5. И заключение напоследок

Технология высокого полета: физика ЭЛС

Это как раз и происходит с электронами в пушке. Такие действия возможны лишь в вакуумной среде. Так что электронно лучевая сварка – дело дорогое и относится оно к технологиям высокого полета: например, в космической или авиационной отраслях промышленности. ЭЛС незаменима в точном приборостроении. Ей подвластно все – даже швы с огромной глубиной плавления.

Все, что есть из самого сложного в сварке, поддается электронно-лучевой технологии для этого метода нет проблем. Она универсальная и… очень дорогая.

Плюсы и минусы ЭЛС

  • Высочайший коэффициент полезного действия. При всех прочих равных затраты энергии при ЭЛС в десять и больше раз, чем ее нужное количество во время ручной дуговой сварки.
  • Этом методов можно сваривать самые массивные детали: для соединения заготовок с краями толщиной в 20 см достаточно всего лишь одного прохода, в то время как другие технологии потребуют сварку в несколько слоев.
  • Весьма немаловажный фактор: этот метод сварки – один из самых безопасных.

Чертеж электронно-лучевой сварки.

  • Обязательное условие для работы – вакуумное пространство вокруг рабочего участка.
  • В шве могут встречаться специфические дефекты: в его корне иногда формируются полости и не проваренные участки.
  • Дороговизна оборудования, условий работы и расходных материалов.
  • Долгая и сложная настройка параметров перед работой, требующая кроме времени высокой квалификации мастера.

Как это делается: технология ЭЛС

Прежде всего нужно выставить правильный режим. Он формируется с учетом нескольких критериев, причем нельзя упускать из виду ни одного из них, они важны в равной степени.

Обозначения электронно-лучевой сварки.

Критерии, влияющие на определение режима сварки ЭЛС:

  • степень точности фокусировки луча;
  • уровень вакуумизации в сварочной камере;
  • длительность импульсов и пауз между ими;
  • уровень ускоряющего напряжения;
  • величина сварочного тока из выпускаемого луча;
  • скорость, с которой пучок перемещается по металлической детали.

Пучок электронов, выпускаемый из электронной пушки, распространяется в вакуумной камере. Размер этой камеры может быть самым разным, в основном он зависит от габаритов металлических заготовок, которые нужно сварить. Минимальный объем камеры составляет 10 см³. Что же касается максимальных размеров, то они могут составлять сотни кубических метров.

Поток из электронно-лучевой пушки оказывает давление, под которым формируется зона плавления и, соответственно, расплавление металла. Под этим же давлением на свариваемую металлическую поверхность начинается выделение энергии кинетической природы, которая нагревает металл – она превращается в тепловую.

Процесс разогрева и расплавления инициирует параллельные процессы реактивного излучения, испарения металла, выделения тепловых вторичных электронов. Импульсная лучевая сварка с очень высокой плотностью лучевой энергии и повышенной частотой колебаний вплоть до 500 Гц применяется и отлично работает при соединении деталей из металлов, которые легко испаряются.

Это, прежде всего, алюминий и магний. Такого рода технология дает возможность работать со швами максимальной глубины. Самое интересное, что с помощью такой же импульсной технологии отлично варятся тонкие листы металлов.

Читать еще:  Основные отличия Электродов ано и уони.

Не будет оборудования, не будет ЭЛС

Вся технология ЭЛС держится на ее уникальном оборудовании и принципе его действия. Речь о специально разработанных установках.

Схема сварки металлов.

Моделей таких установок несколько, они делятся на следующие типологические группы:

  • специализированные модели;
  • универсальные модели для работы под давлением 1 – 10 Па;
  • модели промежуточного вакуума с давлением до 10 Па;
  • установки для сварки в защитном газе с давлением выше 100 Па.

Также оборудование для ЭЛС подразделяется по типу своей конструкции:

  • установки камерного типа, если возможна откачка воздуха;
  • модели с локальной откачкой воздуха для создания вакуума только в точке сваривания;

[box type=”fact”]Все модели установок без исключения содержат обязательные элементы в виде блока питания и самой электронно-лучевой пушки.[/box]

И заключение напоследок

Электронно-лучевую технология сварки изобрели около 50-ти лет назад. И в течение этого времени она остается одним из самых продвинутых и эффективных методов работы с металлами. То, что вполне по плечу методу ЭЛС, совершенно невозможно произвести с помощью иных способов сварки.

[box type=”info”]Сложные и капризные металлы или их сплавы с супер-высокой температурой плавления или повышенной химической активностью, уникальная глубина проварки в заготовках с толстыми краями в один проход – все это можно сделать с помощью ЭЛС.[/box]

ЭЛС создавалась не для домашних гаражей и не для массового промышленного производства. Ее дороговизна и сложность исполнения всегда заставляет просчитывать целесообразность ее использования. Но есть отрасли, где такие подсчеты не нужны по определению: это авиационная и космическая промышленность.

Понятие и применение электронно-лучевой сварки

Идея электронно-лучевой сварки появилась в 50-х годах прошлого века во Франции. Она заключалась в том, что сваривать большинство видов металлов можно, бомбардируя их потоком отрицательно заряженных частиц.

Довольно быстро на свет появились первые опытные установки ЭЛС, и к настоящему моменту они с успехом применяются во многих областях промышленности, как правило — в высокотехнологичном и высокоточном производствах.

Принцип действия

Лучевая сварка в целом — это метод создания неразрывно-монолитного соединения металлов воздействием на их стыки высокоэнергетического луча. При этом природа луча может быть различной.

В электронно-лучевой сварке луч представляет собой плотно скомпонованный поток быстро движущихся электронов, которым сообщается большая кинетическая энергия. При столкновении с металлической поверхностью эта энергия переходит в теплоту, вызывая расплавление металлов.

Воздействие возможно как непрерывным, так и импульсным лучом. В последнем случае частота импульсов обычно находится в диапазоне от 100 до 500 Гц.

Существует и такое понятие, как сварка световым лучом. Изредка так ошибочно называют электронно-лучевую сварку. На самом деле этот термин к ней неприменим, поскольку электронный луч не относится к видам светового излучения, так как невидим.

Свет — это диапазон электромагнитных излучений, видимых человеческому глазу. Сваркой световым лучом правильнее называть лазерную сварку. Лазерный луч действительно представляет собой поток когерентного светового излучения.

Для инициирования электронного потока используются специальные установки — электронные пушки. Луч инициируется мощным электрическим полем, напряжение которого достигает 100 кВ.

При этом в установке создается максимально приближенное к абсолютному вакууму состояние. Из нее выкачивают воздух, создавая давление порядка 10 в минус 4…10 в минус 6 степени мм рт. ст. Это практический предел вакуума, которого можно достичь в промышленности.

Вакуумирование установки необходимо для того, чтобы электроны не теряли кинетическую энергию, сталкиваясь с атомами воздуха. Оно дает приятный побочный эффект — в результате этого происходит дегазация шва. Сварочное соединение не насыщается элементами атмосферного воздуха либо защитных газов.

Данные обстоятельства ведут к тому, что электронно-лучевая сварка имеет широкий спектр достоинств — но в то же время и несколько существенных недостатков, которые ограничивают повсеместное распространение данного метода.

Достоинства

Электронно-лучевая сварка относится к высокотехнологичным видам сварочных работ и применяется, соответственно, на сложных и высокоточных производствах. Основной недостаток у нее, по сути своей, один — установка лучевой сварки сложна в производстве и монтаже, поэтому стоит очень дорого — порядка нескольких миллионов.

Ее применение оправдано и рентабельно там, где стоимость изделия на выходе по всем остальным производственным факторам коррелирует со стоимостью сварочной установки.

Как правило, это отрасли производства, где требуется сверхвысокое качество соединения, в том числе металлов, сварка которых иными методами затруднена или невозможна. К таким относятся химически активные металлы (алюминий, магний и особенно титан), а также сверхтвердые и тугоплавкие.

У электронно-лучевой сварки есть и другие преимущества. Она имеет высокий КПД, что влечет за собой потребление меньшего количества энергии, которое нужно затратить на одну операцию (по сравнению с контактной или дуговой электросваркой).

Сварка электронно-лучевым методом имеет минимальную область пятна нагрева — до 0, 00001 кв. см, меньше — только у лазерной сварки. У нее максимальная мощность в точке нагрева — до 100 миллионов ватт на кв. см (выше только у лазера).

Особенность электронно-лучевой технологии позволяет выполнить дегазацию сварного шва, появляется возможность сваривать химически активные металлы — ниобий, молибден, титан, цирконий. Возможна сварка очень тугоплавких металлов, таких, как вольфрам, так как основная энергия тратится именно на нагрев точки контакта.

Нет необходимости использовать дополнительные средства — припои, флюсы, присадки, плавящиеся и неплавящиеся электроды. широкий диапазон свариваемых деталей по толщине — от десятых долей миллиметра до 200 мм.

Возникает возможность тонко регулировать глубину проплавления и появляется прецизионная точность. Сварка лучом электронов идет практически без участия человека, оператор установки только задает и контролирует параметры.

У нее высокая скорость — до 5 см/сек, и есть возможность изготавливать детали очень малых размеров и сложной конфигурации, варить в труднодоступных местах.

При электронно-лучевой сварке появляется шов «кинжального» сечения, глубокий и узкий, с минимальным наплавлением. Величина угловых деформаций сводится к минимуму.

Недостатки

Разумеется, есть у электронно-лучевой сварки и недостатки. Основной — высокая стоимость самой установки. К другим относятся:

  • сложность контроля проплавления толстого металла — у основания шва могут сохраниться лакуны, воздушные поры;
  • теоретическая возможность повышенного количества брызг металла, появления подрезов или провисов (что характерно и для других методов сварки);
  • длительная и сложная настройка оборудования, требующая высокой квалификации от наладчика;
  • для каждой операции установку требуется перенастраивать, что на практике уменьшает диапазон ее возможностей. Не каждое соединение целесообразно выполнять на станке электронно-лучевой сварки.

Кроме того, перед началом электронно-лучевой сварки детали необходимо очень тщательно зачистить. Первый этап зачистки проводят механическими способами, а второй — физико-химическими, с помощью специальных растворителей.

В некоторых случаях применяется еще и третий — незначительное оплавление краев соединяемых деталей перед сваркой включением установки на малой мощности.

Конструкция установок

Установка электронно-лучевой сварки может быть смонтирована стационарно, либо располагаться внутри вакуумной камеры. Она всегда включает в себя, кроме камеры:

  • катод и анод;
  • механизм транспортировки (самой пушки или деталей);
  • насос для нагнетания вакуума;
  • систему электромагнитного отклонения луча;
  • систему позиционирования электронного пучка;
  • различные вспомогательные устройства и систему управления на основе соответствующего ПО.

В качестве примера можно привести установку ЭЛТУ-60. Этот аппаратный комплекс отечественного производства (НИТИ «Прогресс) предназначен для однопроходной сварки различных, в том числе разнородных металлов и сплавов. Имеет ограничение по толщине — до 30 мм.

Область, в которой используется эта и аналогичные установки — создание воздушных и космических кораблей, изготовление турбин, ядерная энергетика, массовое изготовление подшипников, конструирование сложных электровакуумных приборов, а также другие области особо ответственного назначения.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector