Yoga-mgn.ru

Строительный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Аргон — самый распространённый инертный газ в земной атмосфере

Аргон — самый распространённый инертный газ в земной атмосфере

Купить Аргон в Санкт-Петербурге. В компании Нордгаз Вы можете купить аргон в баллонах по низким ценам, а также заказать доставку.

Газообразный и жидкий аргон изготавливается из воздуха и остаточных газов аммиачных производств.

Применение аргона.
Аргон предназначается для использования в качестве защитной среды при сварке, резке и плавке активных и редких металлов и сплавов на их основе, алюминия, алюминиевых и магниевых сплавов, нержавеющих хромоникелевых жаропрочных сплавов и легированных сталей различных марок; для рафинирования металлов в металлургии.

Свойства аргона.
Атомная масса – 39,948. При нормальных условиях – газ, при температуре -185,9 градусов Цельсия – жидкость.

Опасность аргона.
Нетоксичен и невзрывоопасен, однако представляет опасность для жизни: при его вдыхании мгновенно наступает потеря сознания и через несколько минут – смерть. Газообразный аргон тяжелее воздуха и может накапливаться в слабопроветриваемых помещениях у пола. При этом снижается содержание кислорода в воздухе,что приводит к кислородной недостаточности. Жидкий аргон может вызвать обморожение кожи и поражение слизистых оболочек.

Содержание аргона в мировой материи оценивается приблизительно в 0,02 % по массе. Аргон — третий по содержанию после азота и кислорода компонент воздуха. Аргон — самый распространённый инертный газ в земной атмосфере (в 1 м? воздуха содержится 9,34 л аргона). Качественно аргон обнаруживают с помощью эмиссионного спектрального анализа.

Показатели качества аргона газообразного ГОСТ 10157-79

Аргон — самый распространённый инертный газ в земной атмосфере

Аргон — химический элемент 18-й группы периодической таблицы химических элементов (по устаревшей классификации — элемент главной подгруппы VIII группы) третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 18. Обозначается символом Ar (лат. Argon). Третий по распространённости элемент в земной атмосфере (после азота и кислорода) — 0,93 % по объёму. Простое вещество аргон — инертный одноатомный газ без цвета, вкуса и запаха.

Содержание

  • 1 Распространённость
    • 1.1 Во Вселенной
    • 1.2 Распространение в природе
  • 2 Биологическая роль
    • 2.1 Физиологическое действие
  • 3 Применение

Распространённость

Во Вселенной

Содержание аргона в мировой материи мало и оценивается приблизительно в 0,02 % по массе.

Аргон (вместе с неоном) наблюдается на некоторых звёздах и в планетарных туманностях. В целом его в космосе больше, чем кальция, фосфора, хлора, в то время как на Земле существуют обратные отношения.

Распространение в природе

Аргон — третий по содержанию после азота и кислорода компонент воздуха, его среднестатистическое содержание в атмосфере Земли составляет 0,934 % по объёму и 1,288 % по массе, его запасы в атмосфере оцениваются в 4⋅1014 т. Аргон — самый распространённый инертный газ в земной атмосфере, в 1 м³ воздуха содержится 9,34 л аргона (для сравнения: в том же объёме воздуха содержится 18,2 см³ неона, 5,2 см³ гелия, 1,1 см³ криптона, 0,09 см³ ксенона).

Содержание аргона в литосфере — 4⋅10−6 % по массе[3]. В каждом литре морской воды растворено 0,3 см³ аргона, в пресной воде его содержится 5,5⋅10−5 — 9,7⋅10−5 %. Его содержание в Мировом океане оценивается в 7,5⋅1011 т, а в изверженных породах земной оболочки — 16,5⋅1011 т.

Биологическая роль

Аргон не играет никакой заметной биологической роли.

Физиологическое действие

Инертные газы обладают физиологическим действием, которое проявляется в их наркотическом воздействии на организм. Наркотический эффект от вдыхания аргона проявляется только при барометрическом давлении свыше 0,2 МПа. В 2014 году WADA признала аргон допингом.

Содержание аргона в высоких концентрациях во вдыхаемом воздухе может вызвать головокружение, тошноту, рвоту, потерю сознания и смерть от асфиксии (в результате кислородного голодания).

Применение

Ниже перечислены области применения аргона:

  • в аргоновых лазерах;
  • внутри ламп накаливания и при заполнении внутреннего пространства стеклопакетов;
  • в качестве защитной среды при сварке (дуговой, лазерной, контактной и т. п.) как металлов (например, титана), так и неметаллов;
  • в качестве плазмаобразователя в плазматронах при сварке и резке;
  • в пищевой промышленности аргон зарегистрирован в качестве пищевой добавки E938, в качестве пропеллента и упаковочного газа;
  • в качестве огнетушащего вещества в газовых установках пожаротушения;
  • в медицине во время операций для очистки воздуха и разрезов, так как аргон не образует химических соединений при комнатной температуре;
  • в качестве составной части атмосферы эксперимента «Марс-500»[10] с целью снижения уровня кислорода для предотвращения пожара на борту космического корабля при путешествии на Марс;
  • из-за низкой теплопроводности аргон применяется в дайвинге для поддува сухих гидрокостюмов, однако есть ряд недостатков, например, высокая цена газа (кроме этого, нужна отдельная система для аргона);
  • в химическом синтезе для создания инертной атмосферы при работе с нестабильными на воздухе соединениями.

Аргон

Атомная масса – 39,948. При нормальных условиях – газ, при температуре -185,9 градусов Цельсия – жидкость.

Опасность аргона.

Нетоксичен и невзрывоопасен, однако представляет опасность для жизни: при его вдыхании мгновенно наступает потеря сознания и через несколько минут – смерть. Газообразный аргон тяжелее воздуха и может накапливаться в слабопроветриваемых помещениях у пола. При этом снижается содержание кислорода в воздухе,что приводит к кислородной недостаточности. Жидкий аргон может вызвать обморожение кожи и поражение слизистых оболочек.

Содержание аргона в мировой материи оценивается приблизительно в 0,02 % по массе. Аргон — третий по содержанию после азота и кислорода компонент воздуха. Аргон — самый распространённый инертный газ в земной атмосфере (в1 м? воздуха содержится 9,34л аргона). Качественно аргон обнаруживают с помощью эмиссионного спектрального анализа.

Аргон – инертный газ с атомной массой 39,9, в обычных условиях – бесцветный, без запаха и вкуса, примерно в 1,38 раза тяжелее воздуха. Аргон считается наиболее доступным и сравнительно дешевым среди инертных газов.

Аргон занимает третье место по содержанию в воздухе (после азота и кислорода), на него приходятся примерно 1,3% массы и 0,9% объема атмосферы Земли.

В промышленности, основной способ получения аргона – метод низкотемпературной ректификации воздуха с получением кислорода и азота и попутным извлечением аргона. Также аргон получают в качестве побочного продукта при получении аммиака.

Газообразный аргон хранится и транспортируется в стальных баллонах (по ГОСТ 949-73). Баллон с чистым аргоном окрашен в серый цвет, с надписью «Аргон чистый» зеленого цвета.

Согласно ГОСТ 10157-79 газообразный и жидкий аргон поставляется двух видов: высшего сорта (с объемной долей аргона не менее 99,993%, объемной долей водяных паров не более 0,0009%) и первого сорта (с объемной долей аргона не менее 99,987%, объемной долей водяных паров не более 0,001%).

Аргон не взрывоопасен и не токсичен, однако при высокой концентрации в воздухе может представлять опасность для жизни: при уменьшении объемной доли кислорода ниже 19% появляется кислородная недостаточность, а при значительном снижении содержания кислорода возникают удушье, потеря сознания и даже смерть.

Меры безопасности при обращении с аргоном:
• дистанционный контроль содержания кислорода в воздухе ручными или автоматическими приборами; объем кислорода в воздухе должен составлять не меньше 19%;
• при работе с жидким аргоном, способным вызвать обморожение кожи и поражение слизистой оболочки глаз, необходимо использовать защитные очки и спецодежду;
• при работе в атмосфере аргона необходимо использовать шланговый противогаз или изолирующий кислородный прибор.

Применение аргона при сварке

Аргон используется в качестве инертного защитного газа при дуговой сварке, в том числе в качестве основы защитной газовой смеси (с кислородом, углекислым газом). Является основной защитной средой при сварке алюминия, титана, редких и активных металлов.

Аргон также применяется при плазменной сварке в качестве плазмообразующего газа, при лазерной сварке в качестве плазмоподавляющего и защитного газа.

В зависимости от требуемых объемов потребления аргона могут использоваться несколько схем его обеспечения. При объеме потребления до 10 000 м3/г аргон обычно доставляют в баллонах. При объеме потребления свыше 10 000 м3/г аргон целесообразно перевозить в жидком виде в специальных емкостях железнодорожным или автомобильным транспортом. При транспортировке по железной дороге применяются специализированные цистерны 8Г-513 или 15-558. На автомобильном транспорте наиболее часто устанавливаются универсальные газовые емкости типа ЦТК объемом от 0,5 до 10 м3. В этих емкостях также могут транспортироваться кислород и азот.

При централизованном снабжении схемы обеспечения сварочных постов аргоном могут быть следующими:
• непосредственно от транспортной емкости через перекачивающий насос и стационарный газификатор в сеть (см. рисунок ниже);
• от транспортной емкости в стационарную емкость с дальнейшей газификацией и подачей в сеть;
• заполнение баллонов от транспортной газификационной установки.

Сварка нержавейки

Сварка нержавейки – это трудоемкий, но в, то же время, методичный и скрупулезный процесс, требующий от исполнителя четкого следования инструкциям по сварке. Прежде всего, необходимо защитить зону сварки от неблагоприятного воздействия атмосферного воздуха. Это обеспечит надежную сварку нержавеющих сталей. Само качество сварных соединений будет зависеть от проведенной процедуры подготовки нержавеющей проволоки и кромок деталей. Оксидная пленка, которая образуется после горячей обработки, удаляется механическим путем. Сварка нержавейки может осуществляться вольфрамовым электродом при условии постоянного источника тока.

Читать еще:  Настройка маски «хамелеон» FUBAG Optima 9-13

Особенностью сварки нержавейки является содержание в ней хрома, который при высокой температуре образует карбид хрома, нарушающий структуру стали и повышающий в несколько раз ее хрупкость. Именно по этой причине сварка любых типов нержавеющей стали производится в среде инертных газов (гелия, углекислоты, аргона или смесей) или специальных флюсов, защищающих все хромированные химические элементы, которые входят в состав нержавеющей стали.

Способы сварки нержавеющей стали:

На данный момент существует два основных способа сварки нержавейки:

— электродуговая сварка нержавейки вольфрамовым электродом (неплавящимся или плавящимся). Это самый распространенный способ, который применяется не только промышленными предприятиями, но и частными лицами. В процессе сварки происходит повышение стабильности дуги, и уменьшение частоты образования пор при помощи смеси аргона с углекислым газом или кислородом. Сварка вольфрамовым неплавящимся электродом производится с применением постоянного тока прямой полярности, а плавящегося – током с обратной полярностью. Если в нержавеющей стали имеется доля содержащегося алюминия, то ее варят переменным током с целью разрушения окислительной пленки. При проведении ручной дуговой сварки нержавейки вольфрамовым электродом диаметром до двух миллиметров и присадочной проволокой диаметром не более двух миллиметров, сварочный ток будет составлять 60— 80 А для металла в двух миллиметровую толщину. Если толщина составляет четыре миллиметра — то величина сварочного тока не будет превышать 130 А.

— газовая аргоновая сварка нержавейки с использованием инертных газов и их смесей. Она представляет собой гибрид электрической и газовой сварки. От электросварки она позаимствовала электрическую дугу, а от газовой — идентичный метод работы сварщика. Неплавящийся вольфрамовый электрод является сердцем аргоновой горелки. Вольфрам – это металл, который достаточно проблематично поддается плавке. Вокруг электрода образуется керамическое сопло, и из него во время сварки выдувается инертный газ аргон. Если пытаться сваривать деталь без использования аргона — алюминий начнет попросту трещать, гореть и покрываться коркой. Аргон, в свою очередь, препятствует этому процессу и защищает место сварки от попадания воздуха.

Процесс сварки происходит следующим образом: на свариваемые детали подается «масса», как при классической электросварке. Сварщик берет в левую руку присадочную проволоку, а в правую – горелку. Если производится сварка алюминия то, присадочная проволока должна быть изготовлена из идентичного материала (сплавов алюминия «АК» или «АМГ»). Хотя, в девяноста процентах случаев достаточно взять обычный алюминиевый электротехнический провод нужной толщины. На горелке включается кнопка, и производится подача газа. Между деталью и кончиком неплавящегося электрода возникает электрическая дуга. Она и играет роль главного инструмента – осуществляет плавление детали и присадочной проволоки.

Особенности сварочного процесса нержавейки

При сварке нержавейки используются специальные электроды с покрытием из защитно-легирующего состава, у которых стержень самого электрода сделан из высоколегированной специальной стали. Благодаря такому составу при смешивании металла с металлом и расплавлении электродов свариваемых деталей будет поддерживаться постоянный химический состав шва, который по структуре практически не будет отличаться от нержавеющей стали, из которой произведена деталь.

Сварка производится без колебательных движений горелки, углом вперед на короткой дуге. Угол между присадочным материалом и электродом должен составлять не более 90°, и подача присадочной проволоки должна осуществляться непрерывно. После окончания процесса сваривания или обрыва дуги газ должен подаваться непрерывно до тех пор температура металла не опустится до 400°С.

Также кроме специальных электродов, применяемых для сварки, большой популярностью пользуется проволока из нержавейки, изготовленная тем же производителем, что и сталь, при этом для защиты от кислорода места сварки применяются специальные флюсы на основе оксидов или фторидные флюсы. Также на место сварки может подаваться гелий, аргон или смесь других инертных газов. Кроме того для равномерной подачи проволоки и заваривания часто применяются специальные полуавтоматические сварочные установки, в которых автоматический механизм может осуществлять подачу проволоки непрерывно.

Аргон в сварке

Общие сведения

Аргон — инертный одноатомный газ без цвета, вкуса и запаха. Третий по распространённости элемент в земной атмосфере (после азота и кислорода) — 0,93 % по объёму и 1,29 % по массе. Аргон — самый распространённый инертный газ в земной атмосфере, в 1 м 3 воздуха содержится 9,34 л аргона (для сравнения: в том же объеме воздуха содержится 18,2 см 3 неона, 5,2 см 3 гелия, 1,1 см 3 криптона, 0,09 см 3 ксенона). Есть аргон и в воде, до 0,3 см 3 в литре морской и до 0,55 см 3 в литре пресной воды. Его среднее содержание в земной коре (кларк) — 0,04 г на тонну, что в 14 раз больше, чем гелия, и в 57 — чем неона. Получается, что на Земле аргона намного больше, чем всех прочих элементов его группы, вместе взятых.

Содержание аргона в мировой материи оценивается приблизительно в 0,02 % по массе. Аргон (вместе с неоном) наблюдается на некоторых звездах и в планетарных туманностях. В целом его в космосе больше, чем кальция, фосфора, хлора, в то время как на Земле существуют обратные отношения.

Физические свойства

Аргон — одноатомный газ с температурой кипения (при нормальном давлении) -185,9 °C (немного ниже, чем у кислорода, но немного выше, чем у азота). Температура плавления -189,4°С. В 100 мл воды при 20 °C растворяется 3,3 мл аргона, в некоторых органических растворителях аргон растворяется значительно лучше, чем в воде.

Химические свойства

Название «аргон» (от греч. — ленивый, медленный, неактивный) — подчеркивает важнейшее свойство элемента — его химическую неактивность.

Пока известны только 2 химических соединения аргона — гидрофторид аргона и CU(Ar)O, которые существуют при очень низких температурах. Кроме того, аргон образует эксимерные молекулы, то есть молекулы, у которых устойчивы возбужденные электронные состояния и неустойчиво основное состояние. Также со многими веществами, между молекулами которых действуют водородные связи (водой, фенолом, гидрохиноном и другими), образует соединения включения (клатраты), где атом аргона, как своего рода «гость», находится в полости, образованной в кристаллической решётке молекулами вещества-хозяина.

Получение

Получают аргон как побочный продукт при разделении воздуха на кислород и азот. Обычно используют воздухоразделительные аппараты двукратной ректификации, состоящие из нижней колонны высокого давления (предварительное разделение), верхней колонны низкого давления и промежуточного конденсатора-испарителя. В конечном счете азот отводится сверху, а кислород – из пространства над конденсатором. Летучесть аргона больше, чем кислорода, но меньше, чем азота. Поэтому аргонную фракцию отбирают в точке, находящейся примерно на трети высоты верхней колонны, и отводят в специальную колонну. Дальше следует очистка «сырого» аргона от кислорода (химическим путем или адсорбцией) и от азота (ректификацией).

Классификация аргона по сортам

Аргон обеспечивает хорошую защиту сварочной ванны. В зависимости от назначения и содержания этот газ делится на три сорта. Высший сорт аргона (99,99% Ar) используется для сварки, химически активных металлов, циркония, титановых сплавов, молибдена, сплавов на их основе, ответственных конструкций из нержавеющих сталей. Первый сорт аргона (99,98% Ar) применяется для сварки неплавящимся электродом, магния, алюминия, магниевых и алюминиевых сплавов, менее чувствительных к примесям кислорода и азота. Второй сорт аргона (99,95% Ar) используется для сварки нержавеющих сталей, жаропрочных сплавов и чистого алюминия. Для сварки могут также использоваться смеси аргона с другими газами (кислородом, углекислым газом).

Хранение и транспортировка аргона

Хранится и транспортируется аргон в газообразном виде в стальных баллонах под давлением 150 ат, то есть в баллоне находится 6,2 м 3 газообразного аргона в пересчете на темературу 20˚С и давление 760 мм рт. ст. Возможна также транспортировка аргона в жидком виде в специальных цистернах или сосудах Дьюара с последующей его газификацией. Эксплуатация баллонов должна проводиться в соответствии с правилами безопасной эксплуатации сосудов, которые работают под давлением.

Влияние аргона на человека

При содержании аргона в воздухе свыше 70% на человека будет действовать эффект наркоза. Он тяжелее воздуха и может накапливаться в плохо проветриваемых местах снижая при этом концентрацию кислорода, что может вызвать кислородную недостаточность. При выполнении работ в среде аргона необходимо пользоваться изолирующими приборами и противогазами.

Эта статья перенесена сюда!

Атмосфера – это воздушная оболочка Земли. Простирающаяся вверх на 3000 км от земной поверхности. Ее следы прослеживаются до высоты до 10 000 км. А. имеет неравномерную плотности 50 5 ее массы сосредоточены до 5 км , 75 % – до 10 км , 90 % до 16 км .

Атмосфера состоит из воздуха – механической смеси нескольких газов.

Азот (78 %) в атмосфере играет роль разбавителя кислорода, регулируя темп окисления, а, следовательно, скорость и напряженность биологических процессов. Азот – главный элемент земной атмосферы, который непрерывно обменивается с живым веществом биосферы, причем составными частями последнего служат соединения азота (аминокислоты, пурины и др.). Извлечение азота из атмосферы происходит неорганическим и биохимическим путями, хотя они тесно взаимосвязаны. Неорганическое извлечение связано с образованием его соединений N2O, N2O5, NO2, NH3. Они находятся в атмосферных осадках и образуются в атмосфере под действием электрических разрядов во время гроз или фотохимических реакций под влиянием солнечной радиации.

Читать еще:  Станок деревообрабатывающий Мастер-Универсал 2500Е MAX

Биологическое связывание азота осуществляется некоторыми бактериями в симбиозе с высшими растениями в почвах. Азот также фиксируется некоторыми микроорганизмами планктона и водорослями в морской среде. В количественном отношении биологическое связывание азота превышает его неорганическую фиксацию. Обмен всего азота атмосферы происходит примерно в течение 10 млн. лет. Азот содержится в газах вулканического происхождения и в изверженных горных породах. При нагревании различных образцов кристаллических пород и метеоритов азот освобождается в виде молекул N2 и NH3. Однако главной формой присутствия азота, как на Земле, так и на планетах земной группы, является молекулярная. Аммиак, попадая в верхние слои атмосферы, быстро окисляется, высвобождая азот. В осадочных горных породах он захороняется совместно с органическим веществом и находится в повышенном количестве в битуминозных отложениях. В процессе регионального метаморфизма этих пород азот в различной форме выделяется в атмосферу Земли.

Геохимический круговорот азота ( В.А. Вронский, Г.В. Войткевич)

Кислород (21 %) используется живыми организмами для дыхания, входит в состав органического вещества (белки, жиры, углеводы). Озон О3. задерживает губительную для жизни ультрафиолетовую радиацию Солнца.

Кислород – второй по распространению газ атмосферы, играющий исключительно важную роль во многих процессах биосферы. Господствующей формой его существования является О2. В верхних слоях атмосферы под влиянием ультрафиолетовой радиации происходит диссоциация молекул кислорода, а на высоте примерно 200 км отношение атомарного кислорода к молекулярному (О : О2) становится равным 10. При взаимодействии этих форм кислорода в атмосфере (на высоте 20- 30 км ) возникает озоновый пояс (озоновый экран). Озон (О3) необходим живым организмам, задерживая губительную для них большую часть ультрафиолетовой радиации Солнца.

Содержание свободного кислорода в земной атмосфере отражает баланс между его фотосинтезирующей продукцией и процессами поглощения (окисление органики, деструкция вещества мертвых организмов). Расчеты показывают, что кислород в атмосфере Земли обновляется в течение 3-4 тыс. лет, т.е. относится к весьма мобильным компонентам газовой оболочки.

На ранних этапах развития Земли свободный кислород возникал в очень малых количествах в результате фотодиссоциации молекул углекислого газа и воды в верхних слоях атмосферы. Однако эти малые количества быстро расходовались на окисление других газов. С появлением в океане автотрофных фотосинтезирующих организмов положение существенно изменилось. Количество свободного кислорода в атмосфере стало прогрессивно возрастать, активно окисляя многие компоненты биосферы. Так, первые порции свободного кислорода способствовали прежде всего переходу закисных форм железа в окисные, а сульфидов в сульфаты.

В конце концов количество свободного кислорода в атмосфере Земли достигло определенной массы и оказалось сбалансированным таким образом, что количество производимого стало равно количеству поглощаемого. В атмосфере установилось относительное постоянство содержания свободного кислорода.

Геохимический круговорот кислорода ( В.А. Вронский, Г.В. Войткевич)

Углекислый газ, идет на образование живого вещества, а вместе с водяным паром создает так называемый «оранжерейный (парниковый) эффект».

Углерод (углекислота) – его большая часть в атмосфере находится в виде СО2 и значительно меньшая в форме СН4. Значение геохимической истории углерода в биосфере исключительно велико, поскольку он входит в состав всех живых организмов. В пределах живых организмов преобладают восстановленные формы нахождения углерода, а в окружающей среде биосферы – окисленные. Таким образом, устанавливается химический обмен жизненного цикла: СО2 ↔ живое вещество.

Источником первичной углекислоты в биосфере является вулканическая деятельность, связанная с вековой дегазацией мантии и нижних горизонтов земной коры. Часть этой углекислоты возникает при термическом разложении древних известняков в различных зонах метаморфизма. Миграция СО2 в биосфере протекает двумя способами.

Первый способ выражается в поглощении СО2 в процессе фотосинтеза с образованием органических веществ и в последующем захоронении в благоприятных восстановительных условиях в литосфере в виде торфа, угля, нефти, горючих сланцев. По второму способу миграция углерода приводит к созданию карбонатной системы в гидросфере, где СО2 переходит в Н2СО3, НСО3 -1 , СО3 -2 . Затем с участием кальция (реже магния и железа) происходит осаждение карбонатов биогенным и абиогенным путем. Возникают мощные толщи известняков и доломитов. По оценке А.Б. Ронова, соотношение органического углерода (Сорг) к углероду карбонатному (Скарб) в истории биосферы составляло 1:4.

Наряду с глобальным круговоротом углерода существует еще ряд его малых круговоротов. Так, на суше зеленые растения поглощают СО2 для процесса фотосинтеза в дневное время, а в ночное – выделяют его в атмосферу. С гибелью живых организмов на земной поверхности происходит окисление органических веществ (с участием микроорганизмов) с выделением СО2 в атмосферу. В последние десятилетия особое место в круговороте углерода занимает массовое сжигание ископаемого топлива и возрастание его содержания в современной атмосфере.

Круговорот углерода в географической оболочке (по Ф. Рамаду, 1981)

Аргон – третий по распространению атмосферный газ, что резко отличает его от крайне скудно распространенных других инертных газов. Однако аргон в своей геологической истории разделяет судьбу этих газов, для которых характерны две особенности:

  1. необратимость их накопления в атмосфере;
  2. тесная связь с радиоактивным распадом определенных неустойчивых изотопов.

Инертные газы находятся вне круговорота большинства циклических элементов в биосфере Земли.

Все инертные газы можно подразделить на первичные и радиогенные. К первичным относятся те, которые были захвачены Землей в период ее образования. Они распространены крайне редко. Первичная часть аргона представлена преимущественно изотопами 36 Аr и 38 Аr, в то время как атмосферный аргон состоит полностью из изотопа 40 Аr (99,6%), который, несомненно, является радиогенным. В калийсодержащих породах происходило и происходит накопление радиогенного аргона за счет распада калия-40 путем электронного захвата: 40 К + е → 40 Аr.

Поэтому содержание аргона в горных породах определяется их возрастом и количеством калия. В такой мере концентрация гелия в породах служит функцией их возраста и содержания тория и урана. Аргон и гелий выделяются в атмосферу из земных недр во время вулканических извержений, по трещинам в земной коре в виде газовых струй, а также при выветривании горных пород. Согласно расчетам, выполненным П. Даймоном и Дж. Калпом, гелий и аргон в современную эпоху накапливаются в земной коре и в сравнительно малых количествах поступают в атмосферу. Скорость поступления этих радиогенных газов настолько мала, что не могла в течение геологической истории Земли обеспечить наблюдаемое содержание их в современной атмосфере. Поэтому остается предположить, что большая часть аргона атмосферы поступила из недр Земли на самых ранних этапах ее развития и значительно меньшая добавилась впоследствии в процессе вулканизма и при выветривании калийсодержащих горных пород.

Таким образом, в течение геологического времени у гелия и аргона были разные процессы миграции. Гелия в атмосфере весьма мало (около 5*10 -4 %), причем «гелиевое дыхание» Земли было более облегченным, так как он, как самый легкий газ, улетучивался в космическое пространство. А «аргоновое дыхание» – тяжелым и аргон оставался в пределах нашей планеты. Большая часть первичных инертных газов, как неон и ксенон, была связана с первичным неоном, захваченным Землей в период ее образования, а также с выделением при дегазации мантии в атмосферу. Вся совокупность данных по геохимии благородных газов свидетельствует о том, что первичная атмосфера Земли возникла на самых ранних стадиях своего развития.

В атмосфере содержится и водяной пар и вода в жидком и твердом состоянии. Вода в атмосфере является важным аккумулятором тепла.

В нижних слоях атмосферы содержится большое количество минеральной и техногенной пыли и аэрозолей, продуктов горения, солей, спор и пыльцы растений и т.д.

До высоты 100- 120 км , вследствие полного перемешивания воздуха состав атмосферы однороден. Соотношение между азотом и кислородом постоянно. Выше преобладают инертные газы, водород и др. В нижних слоях атмосферы находится водяной пар. С удалением от земли содержание его падает. Выше соотношение газов изменяется, например на высоте 200- 800 км , кислород преобладает над азотом в 10-100 раз.

Первичная атмосфера Земли состояла главным образом из водяных паров, водорода и аммиака. Под воздействием ультрафиолетового излучения Солнца водяные пары разлагались на водород и кислород. Водород уходил в космическое пространство, кислород вступал в реакцию с аммиаком и образовывались азот и вода. В начале геологической истории Земля благодаря магнитосфере, изолировавшей её от солнечного ветра, создала вторичную собственную углекислую атмосферу. Углекислый газ поступал из недр при интенсивных вулканических извержениях. С появлением в конце палеозоя зеленых растений кислород стал поступать в атмосферу в результате разложения углекислого газа при фотосинтезе, и состав атмосферы принял современный вид. Современная атмосфера в значительной степени продукт живого вещества биосферы. Полное обновление кислорода планеты живым веществом происходит за 5200-5800 лет. Вся его масса усваивается живыми организмами приблизительно за 2 тыс. лет, вся углекислота – за 300-395 лет.

Состав первичной и современной атмосферы Земли

Аргон, Argon

История открытия аргона могла бы послужить основой для хорошего детектива. Сообщению об открытии нового газа поверили далеко не все химики. Усомнился в нем и сам Менделеев. Открытие аргона, казалось, могло привести к тому, что все «здание» периодической системы рухнет. Аргон не имел в таблице аналогов, ему вообще не находилось места в периодической системе: куда, скажите, можно поместить элемент, лишенный химических свойств?

Читать еще:  Какие виды сварочных аппаратов бывают? Особенности и характеристики

Восемнадцатый элемент

Аргон относится к числу благородных газов, а история изобилует поистине драматичными моментами. В 1785 году английский химик и физик Г. Кавендиш обнаружил в воздухе какой-то новый газ, необыкновенно устойчивый химически. На долю этого газа приходилась примерно одна сто двадцатая часть объема воздуха. Но что это за газ, Кавендишу выяснить не удалось.

Об этом опыте вспомнили 107 лет спустя, когда Джон Уильям Стратт (лорд Рэлей) натолкнулся на ту же примесь, заметив, что азот воздуха тяжелее, чем азот, выделенный из соединений. Не найдя достоверного объяснения аномалии, Рэлей через журнал Nature обратился к коллегам-естествоиспытателям с предложением вместе подумать и поработать над разгадкой ее причин.

Спустя два года Рэлей и У. Рамзай установили, что в азоте воздуха действительно есть примесь неизвестного газа, более тяжелого, чем азот. Газ вел себя парадоксально: он не вступал в реакции с хлором, металлами, кислотами, щелочами, т.е. был абсолютно химически инертен. И еще одна неожиданность: Рамзай доказал, что молекула этого газа состоит из одного атома, — а до той поры одноатомные газы были неизвестны.

Когда Рэлей и Рамзай выступили с публичным сообщением о своем открытии, это произвело ошеломляющее впечатление. Многим казалось невероятным, чтобы несколько поколений ученых, выполнивших тысячи анализов воздуха, проглядели его составную часть, да еще такую заметную — почти процент! Кстати, именно в этот день и час, 13 августа 1894 года, аргон и получил свое имя (от греч. «аргос» — «ленивый», «безразличный»).

Сообщению об открытии нового газа поверили далеко не все химики, усомнился в нем и сам Менделеев. Открытие аргона, казалось, могло привести к тому, что все «здание» периодической системы рухнет. Атомная масса газа (39,9) указывала ему место между калием (39,1) и кальцием (40,1). Но в этой части таблицы все клетки были давно заняты. Аргон не имел в таблице аналогов, ему вообще не находилось места в периодической системе.

Поэтому официальное признание аргон получил лишь четверть века спустя — после открытия гелия. Теперь уже двум элементам не было места в периодической системе. После длительных дискуссий Менделеев и Рамзай пришли к выводу, что инертным газам нужно отвести отдельную, так называемую нулевую группу между галогенами и щелочными металлами.

Химическая инертность аргона (как и других газов нулевой группы) и одноатомность его молекул объясняются прежде всего предельной насыщенностью электронных оболочек.

Из подгруппы тяжелых инертных газов аргон самый легкий. Он тяжелее воздуха в 1,38 раза. Жидкостью становится при -185,9°С, затвердевает при –189,4°С (в условиях нормального давления). Молекула аргона одноатомна.

В отличие от гелия и неона, он довольно хорошо адсорбируется на поверхностях твердых тел и растворяется в воде (3,29 см 3 в 100 г воды при 20°С). Еще лучше растворяется аргон во многих органических жидкостях. Зато он практически нерастворим в металлах и не диффундирует сквозь них.

Под действием электрического тока аргон ярко светится, и сегодня сине-голубое свечение аргона широко используется в светотехнике.

Биологи нашли, что аргон благоприятствует росту растений. Даже в атмосфере чистого аргона семена риса, кукурузы, огурцов и ржи выкинули ростки. Лук, морковь и салат хорошо прорастают в атмосфере, состоящей из 98% аргона и только 2% кислорода.

На Земле и во Вселенной

На Земле аргона намного больше, чем всех прочих элементов его группы, вместе взятых. Его среднее содержание в земной коре (кларк) — 0,04 г на тонну, что в 14 раз больше, чем гелия, и в 57 — чем неона. Есть аргон и в воде, до 0,3 см 3 в литре морской и до 0,55 см 3 в литре пресной воды. Любопытно, что в воздухе плавательного пузыря рыб аргона находится больше, чем в атмосферном воздухе. Это потому, что в воде аргон растворим лучше, чем азот.

Главное «хранилище» земного аргона — атмосфера. Его в ней (по весу) 1,286%, причем 99,6% атмосферного аргона — самый тяжелый изотоп — аргон-40. Еще больше доля этого изотопа в аргоне земной коры. Между тем у подавляющего большинства легких элементов картина обратная — преобладают легкие изотопы.

В материи Вселенной аргон представлен еще обильнее, чем на нашей планете. Особенно много его в веществе горячих звезд и планетарных туманностей. Подсчитано, что аргона в космосе больше, чем хлора, фосфора, кальция, калия — элементов, весьма распространенных на Земле.

Как добывают аргон

Земная атмосфера содержит 66 • 1013 тонн аргона. Этот источник газа неисчерпаем. Тем более что практически весь аргон рано или поздно возвращается в атмосферу, поскольку при использовании он не претерпевает никаких физических или химических изменений. Исключение составляют весьма незначительные количества изотопов аргона, расходуемые на получение в ядерных реакциях новых элементов и изотопов.

Получают аргон как побочный продукт при разделении воздуха на кислород и азот. Обычно используют воздухоразделительные аппараты двукратной ректификации, состоящие из нижней колонны высокого давления (предварительное разделение), верхней колонны низкого давления и промежуточного конденсатора-испарителя. В конечном счете азот отводится сверху, а кислород — из пространства над конденсатором.

Летучесть аргона больше, чем кислорода, но меньше, чем азота. Поэтому аргонную фракцию отбирают в точке, находящейся примерно на трети высоты верхней колонны, и отводят в специальную колонну. Состав аргонной фракции: 10–12% аргона, до 0,5% азота, остальное — кислород. В «аргонной» колонне, присоединенной к основному аппарату, получают аргон с примесью 3—10% кислорода и 3-5% азота. Дальше следует очистка «сырого» аргона от кислорода (химическим путем или адсорбцией) и от азота (ректификацией). В промышленных масштабах ныне получают аргон до 99,99%-ой чистоты. Аргон извлекают также из отходов аммиачного производства — из азота, оставшегося после того, как большую его часть связали водородом.

Нужный в хозяйстве «лентяй»

Как самый доступный и относительно дешевый инертный газ аргон стал продуктом массового производства, особенно в последние десятилетия.

Первоначально главным потребителем элемента №18 была электровакуумная техника. И сейчас подавляющее большинство ламп накаливания (миллиарды штук в год) заполняют смесью аргона (86%) и азота (14%). Переход с чистого азота на эту смесь повысил светоотдачу ламп. Поскольку в аргоне удачно сочетаются значительная плотность с малой теплопроводностью, металл нити накаливания испаряется в таких лампах медленнее, передача тепла от нити к колбе в них меньше. Используется аргон и в современных люминесцентных лампах для облегчения зажигания, лучшей передачи тока и предохранения катодов от разрушения.

Однако в последние десятилетия наибольшая часть получаемого аргона идет не в лампочки, а в металлургию, металлообработку и некоторые смежные с ними отрасли промышленности. В среде аргона ведут процессы, при которых нужно исключить контакт расплавленного металла с кислородом, азотом, углекислотой и влагой воздуха. Аргонная среда используется при горячей обработке титана, тантала, ниобия, бериллия, циркония, гафния, вольфрама, урана, тория, а также щелочных металлов. В атмосфере аргона обрабатывают плутоний, получают некоторые соединения хрома, титана, ванадия и других элементов (сильные восстановители).

Уже существуют металлургические цеха объемом в несколько тысяч кубометров с атмосферой, состоящей из аргона высокой чистоты. В этих цехах работают в изолирующих костюмах, а дышат подаваемым через шланги воздухом (выдыхаемый воздух отводится также через шланги); запасные дыхательные аппараты закреплены на спинах работающих.

Защитные функции выполняет аргон и при выращивании монокристаллов (полупроводников, сегнетоэлектриков), а также при производстве твердосплавных инструментов. Продувкой аргона через жидкую сталь из нее удаляют газовые включения. Это улучшает свойства металла.

Все шире применяется дуговая электросварка в среде аргона. В аргонной струе можно сваривать тонкостенные изделия и металлы, которые прежде считались трудносвариваемыми.

Не будет преувеличением сказать, что электрическая дуга в аргонной атмосфере внесла переворот в технику резки металлов. Процесс намного ускорился, появилась возможность резать толстые листы самых тугоплавких металлов. Продуваемый вдоль столба дуги аргон (в смеси с водородом) предохраняет кромки разреза и вольфрамовый электрод от образования окисных, нитридных и иных пленок. Одновременно он сжимает и концентрирует дугу на малой поверхности, отчего температура в зоне резки достигает 4000-6000°С. К тому же эта газовая струя выдувает продукты резки. При сварке в аргонной струе нет надобности во флюсах и электродных покрытиях, а стало быть, и в зачистке шва от шлака и остатков флюса.

Стремление использовать свойства и возможности сверхчистых материалов — одна из тенденций современной техники. Для сверхчистоты нужны инертные защитные среды, разумеется, тоже чистые; аргон — самый дешевый и доступный из благородных газов. Поэтому его производство и потребление росло, растет и будет расти.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector