Yoga-mgn.ru

Строительный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Таблица: Температурный коэффициент линейного расширения металлов, твердых веществ, жидкостей

Тепловое расширение твердых тел

Тепловое расширение — изменение линейных размеров и формы тела при изменении его температуры. Для характеристики теплового расширения твёрдых тел вводят коэффициент линейного теплового расширения.

Механизм теплового расширения твердых тел можно представить следующим образом. Если к твердому телу подвести тепловую энергию, то благодаря колебанию атомов в решетке происходит процесс поглощения им теплоты. При этом колебания атомов становятся более интенсивными, т.е. увеличиваются их амплитуда и частота. С увеличением расстояния между атомами увеличивается и потенциальная энергия, которая характеризуется межатомным потенциалом.

Последний выражается суммой потенциалов сил отталкивания и притяжения. Силы отталкивания между атомами с изменением межатомного расстояния меняются быстрее, чем силы притяжения; в результате форма кривой минимума энергии оказывается несимметричной, и равновесное межатомное расстояние увеличивается. Это явление и соответствует тепловому расширению.

Зависимость потенциальной энергии взаимодействия молекул от расстояния между ними позволяет выяснить причину возникновения теплового расширения. Как видно из рисунка 9.2, кривая потенциальной энергии сильно несимметрична. Она очень быстро (круто) возрастает от минимального значения Ер0 (в точке r) при уменьшении r и сравнительно медленно растет при увеличении r.

Рисунок 2.5

При абсолютном нуле в состоянии равновесия молекулы находились бы друг от друга на расстоянии r, соответствующем минимальному значению потенциальной энергии Ер0. По мере нагревания молекулы начинают совершать колебания около положения равновесия. Размах колебаний определяется средним значением энергии Е. Если бы потенциальная кривая была симметричной, то среднее положение молекулы по-прежнему соответствовало бы расстоянию r. Это означало бы общую неизменность средних расстояний между молекулами при нагревании и, следовательно, отсутствие теплового расширения. На самом деле кривая несимметрична. Поэтому при средней энергии, равной , среднее положение колеблющейся молекулы соответствует расстоянию r1 > r.

Изменение среднего расстояния между двумя соседними молекулами означает изменение расстояния между всеми молекулами тела. Поэтому размеры тела увеличиваются. Дальнейшее нагревание тела приводит к увеличению средней энергии молекулы до некоторого значения , и т. д. При этом увеличивается и среднее расстояние между молекулами, так как теперь колебания совершаются с большей амплитудой вокруг нового положения равновесия: r2 > r1, r3 > r2 и т. д.

Применительно к твердым телам, форма которых при изменении температуры (при равномерном нагревании или охлаждении) не меняется, различают изменение линейных размеров (длины, диаметра и т. п.) — линейное расширение и изменение объема — объемное расширение. У жидкостей при нагревании форма может меняться (например, в термометре ртуть входит в капилляр). Поэтому в случае жидкостей имеет смысл говорить только об объемном расширении.

Основной закон теплового расширения твердых тел гласит, что тело с линейным размером L при увеличении его температуры на ΔT расширяется на величину ΔL, равную:

где α — так называемый коэффициент линейного теплового расширения.

Аналогичные формулы имеются для расчета изменения площади и объема тела. В приведенном простейшем случае, когда коэффициент теплового расширения не зависит ни от температуры, ни от направления расширения, вещество будет равномерно расширяться по всем направлениям в строгом соответствии с вышеприведенной формулой.

Коэффициент линейного расширения зависит от природы вещества, а также от температуры. Однако, если рассматривать изменения температуры в не слишком широких пределах, зависимостью α от температуры можно пренебречь и считать температурный коэффициент линейного расширения величиной постоянной для данного вещества. В этом случае линейные размеры тела, как вытекает из формулы (2.28), зависят от изменения температуры следующим образом:

Из твердых тел сильнее всех расширяется воск, превышая в этом отношении многие жидкости. Коэффициент теплового расширения воска в зависимости от сорта в 25 – 120 раз больше чем у железа. Из жидкостей сильнее других расширяется эфир. Однако есть жидкость, расширяющаяся в 9 раз сильнее эфира – жидкая углекислота (СО3) при +20 градусах Цельсия. Ее коэффициент расширения в 4 раза больше, чем у газов.

Наименьшим коэффициентом теплового расширения из твердых тел обладает кварцевое стекло – в 40 раз меньше, чем железо. Кварцевую колбу раскаленную до 1000 градусов можно смело опускать в ледяную воду, не опасаясь за целостность сосуда: колба не лопается. Малым коэффициентом расширения, хотя и большим, чем у кварцевого стекла, отличается также алмаз.

Из металлов, меньше всего расширяется сорт стали, носящий название инвар, коэффициент его теплового расширения в 80 раз меньше, чем у обычной стали.

В приведенной ниже таблице 2.1 показаны коэффициенты объемного расширения некоторых веществ.

Таблица 2.1 — Значение изобарического коэффициента расширения некоторых газов, жидкостей и твёрдых тел при атмосферном давлении

Контрольные вопросы

1. Дать характеристику распределению нормальных колебаний по частотам.

2. Что такое фонон?

3. Объяснить физический смысл температуры Дебая. Чем определяется значение температуры Дебая для данного вещества?

4. Почему при низких температурах решёточная теплоёмкость кристалла не остается постоянной?

5. Что называется теплоёмкостью твёрдого тела? Чем она определяется?

6. Объяснить зависимость решёточной теплоёмкости кристалла Cреш от температуры T.

7. Получить закон Дюлонга-Пти для молярной теплоёмкости решётки.

8. Получить закон Дебая для молярной теплоёмкости решётки кристалла.

9. Какой вклад вносит электронная теплоемкость в молярную теплоемкость металла?

10. Что называется теплопроводностью твёрдого тела? Чем она характеризуется? Чем осуществляется теплопроводность в случаях металла и диэлектрика.

11. Как зависит коэффициент теплопроводности кристаллической решётки от температуры? Объяснить.

12. Дать определение теплопроводности электронного газа. Сравнить χэл и χреш в металлах и диэлектриках.

13. Дать физическое объяснение механизму теплового расширения твёрдых тел? Может ли КТР быть отрицательным? Если да, то объяснить причину.

14. Объяснить температурную зависимость коэффициента теплового расширения.

Синонимы к словосочетанию «тепловое расширение»
(а также близкие по смыслу слова и выражения)

Связанные слова и выражения

  • коэффициент теплового расширения, коэффициент линейного расширения, термическое расширение
  • тепловое расширение, тепловая инерция
  • модуль упругости
  • обработка резанием
  • ударная вязкость
  • коррозионная стойкость
  • шероховатость поверхности
  • влажность древесины
  • закладные детали
  • порошковая проволока
  • неметаллические включения
  • присадочный металл
  • лёгкие бетоны
  • концентрация напряжений
  • предел текучести
  • полимерные трубы
  • упругая деформация
  • вспененный полиэтилен
  • минеральная вата
  • антикоррозионная защита
  • компрессионное кольцо
  • бетонная смесь
  • уплотняющая прокладка
  • ручная дуговая сварка
  • колосниковая решётка
  • защитный газ
  • строительные конструкции

Делаем Карту слов лучше вместе

Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!

Спасибо! Я стал чуточку лучше понимать мир эмоций.

Вопрос: тяжеловоз — это что-то нейтральное, положительное или отрицательное?

Связанные слова (по тематикам)

  • Люди: потребитель, оператор, астронавт, население, бортинженер
  • Места: сетчатка, метагалактика, реактор, конвертер, агломерация
  • Предметы: молекула, датчик, излучатель, спектрометр, фибриноген
  • Действия: диффузия, замедление, циркуляция, коагуляция, аккумуляция
  • Абстрактные понятия: градиент, теплоотдача, проводимость, разрежение, плотность

Ассоциации к слову «тепловой&raquo

Ассоциации к слову «расширение&raquo

Предложения со словосочетанием «тепловое расширение&raquo

  • При закупке керамического нового красного кирпича следует учитывать, что его коэффициент теплового расширения может оказаться неподходящим для использования при повышенном температурном режиме.

Сочетаемость слова «тепловой&raquo

  • тепловой удар
    тепловая энергия
    тепловая обработка
  • тепловая смерть вселенной
    тепловая обработка продуктов
    с тепловыми головками самонаведения
  • отстреливать тепловые ловушки
    переходить в тепловую
    не получить тепловой удар
  • (полная таблица сочетаемости)

Сочетаемость слова «расширение&raquo

  • варикозное расширение
    инфляционное расширение
    тепловое расширение
  • расширение сознания
    расширение вселенной
    расширение границ
  • процесс расширения
    возможность расширения
    в результате расширения
  • приводить к расширению
    требовать расширения
    стремиться к расширению
  • (полная таблица сочетаемости)
Читать еще:  Сколько грунтовки расходуется на 1 м2 различной поверхности?

Значение словосочетания «тепловое расширение&raquo

Тепловое расширение (также используется термин «термическое расширение») — изменение линейных размеров и формы тела при изменении его температуры. Количественно тепловое расширение жидкостей и газов при постоянном давлении характеризуется изобарным коэффициентом расширения (объёмным коэффициентом теплового расширения). Для характеристики теплового расширения твёрдых тел дополнительно вводят коэффициент линейного теплового расширения. (Википедия)

Отправить комментарий

Дополнительно

  • Разбор по составу слова «тепловой» (морфемный разбор)
  • Разбор по составу слова «расширение» (морфемный разбор)
Значение словосочетания «тепловое расширение&raquo

Тепловое расширение (также используется термин «термическое расширение») — изменение линейных размеров и формы тела при изменении его температуры. Количественно тепловое расширение жидкостей и газов при постоянном давлении характеризуется изобарным коэффициентом расширения (объёмным коэффициентом теплового расширения). Для характеристики теплового расширения твёрдых тел дополнительно вводят коэффициент линейного теплового расширения.

Предложения со словосочетанием «тепловое расширение&raquo

При закупке керамического нового красного кирпича следует учитывать, что его коэффициент теплового расширения может оказаться неподходящим для использования при повышенном температурном режиме.

Можно ли механической силой помешать тепловому расширению металлического бруса или ртутного столба?

Натяг обеспечивает неподвижность гильзы при тепловом расширении материала блока в процессе прогрева работающего двигателя.

Таблица: Температурный коэффициент линейного расширения металлов, твердых веществ, жидкостей

Общеизвестно, что твердые тела при нагревании увеличивают свой объем. Это — тепловое расширение. Рассмотрим причины, приводящие к увеличению объема тела при нагревании.

Очевидно, что объем кристалла растет с увеличением среднего расстояния между атомами. Значит, повышение температуры влечет за собой увеличение среднего расстояния между атомами кристалла. Чем же обусловлено увеличение расстояния между атомами при нагревании?

Повышение температуры кристалла означает увеличение энергии теплового движения, т. е. тепловых колебаний атомов в решетке (см. стр. 459), а следовательно, и рост амплитуды этих колебаний.

Но увеличение амплитуды колебаний атомов не всегда приводит к увеличению среднего расстояния между ними.

Если бы колебания атомов были строго Уармоническими, то каждый атом настолько же приближался бы к одному из своих соседей, насколько удалялся от другого, и увеличение амплитуды его колебаний не привело бы к изменению среднего межатомного расстояния, а значит, и к тепловому расширению.

В действительности атомы в кристаллической решетке совершают ангармонические (т. е. не гармонические) колебания. Это Обусловлено характером зависимости сил взаимодействия между/атомами от расстояния между ними. Как было указано в начале настоящей главы (см. рис. 152 и 153), зависимость эта такова, что при больших расстояниях между атомами силы взаимодействия между атомами проявляются как силы притяжения, а при уменьшении этого расстояния меняют свой знак и становятся силами отталкивания, быстро возрастающими с уменьшением расстояния.

Это приводит к тому, что при возрастании «амплитуды» колебаний атомов вследствие нагревания кристалла рост сил отталкивания между атомами преобладает над ростом сил притяжения. Другими словами, атому «легче» удалиться от соседа, чем приблизиться к другому. Это, конечно, должно привести к увеличению среднего расстояния между атомами, т. е. к увеличению объема тела при его нагревании.

Отсюда следует, что причиной теплового расширения твердых тел является ангармоничность колебаний атомов в кристаллической решетке.

Количественно тепловое расширение характеризуется коэффициентами линейного и объемного расширения, которые определяются следующим образом. Пусть тело длиной I при изменении температуры на градусов изменяет свою длину на Коэффициент линейного расширения определяется из соотношения

т. е. коэффициент линейного расширения равен относительному изменению длины при изменении температуры на один градус. Точно так же коэффициент объемного расширения определяется формулой

т. е. коэффициент равен относительному изменению объема отнесенному к одному градусу.

Из этих формул следует, что длина и объем при некоторой температуре, отличающейся от начальной на градусов, выражаются формулами (при малом

где начальные длина и объем тела.

Вследствие анизотропии кристаллов коэффициент линейного расширения а может быть различным в разных направлениях. Это означает, что если из данного кристалла выточить шар, то после его нагревания он потеряет свою сферическую форму. Можно показать, что в самом общем случае такой шар при нагревании превращается в трехосный эллипсоид, оси которого связаны с кристаллографическими осями кристалла.

Коэффициенты теплового расширения по трем осям этого эллипсоида называются главными коэффициентами расширения кристалла.

Если их обозначить соответственно через то коэффициент объемного расширения кристалла

Для кристаллов с кубической симметрией, так же как и для изотропных тел,

Шар, выточенный из таких тел, остается шаром и после нагревания (разумеется, большего диаметра).

В некоторых кристаллах (например, гексагональных)

Коэффициенты линейного и объемного расширения практически остаются постоянными, если интервалы температур, в которых они измеряются, малы, а сами температуры высокие. Вообще же коэффициенты теплового расширения зависят от температуры и притом так же, как теплоемкость, т. е. при низких температурах коэффициенты уменьшаются с понижением температуры пропорционально кубу температуры, стремясь, как и теплоемкость,

к нулю при абсолютном нуле. Это неудивительно, так как и теплоемкость, и тепловое расширение связаны с колебаниями решетки: теплоемкость дает количество теплоты, необходимое для увеличения средней энергии тепловых колебаний атомов, зависящей от амплитуды колебаний, коэффициент же теплового расширения непосредственно связан со средними расстояниями между атомами, которые тоже зависят от амплитуды атомных колебаний.

Отсюда следует важный закон, открытый Грюнейзеном: отношение коэффициента теплового расширения к атомной теплоемкости твердого тела для данного вещества есть величина постоянная (т. е. не зависящая от температуры).

Коэффициенты теплового расширения твердых тел обычно очень малы, как это видно из табл. 22. Приведенные в этой таблице значения коэффициента а относятся к интервалу температур между и

Таблица 22 (см. скан) Коэффициенты теплового расширения твердых тел

Некоторые вещества имеют особенно малый коэффициент теплового расширения. Таким свойством отличается, например, кварц Другим примером может служить сплав никеля и железа (36% Ni), известный под названием инвар Эти вещества получили широкое применение в точном приборостроении.

Таблица: Температурный коэффициент линейного расширения металлов, твердых веществ, жидкостей

Найдите по таблице два металла с объемно-центрированной и гранецентрированной упаковкой с близкими температурами плавления (максимальное отличие 20 градусов). Посчитайте отношение их коэффициентов линейного расширения. Значение запишите с точностью до второго знака после запятой.

Прочитайте текст и выполните задания 16—18.

Одним из самых распространенных материалов, с которым всегда предпочитали работать люди, был металл. Все металлы имеют ряд свойств, которые позволяют объединять их в одну большую группу веществ. В свою очередь, эти свойства объясняет кристаллическое строение металлов. К специфическим свойствам рассматриваемых веществ относят следующие:

1. Металлический блеск. Все представители простых веществ им обладают, причем большинство одинаковым серебристо-белым цветом. Лишь некоторые (золото, медь, сплавы) отличаются.

2. Ковкость и пластичность — способность деформироваться и восстанавливаться достаточно легко. У разных представителей выражена в неодинаковой мере.

3. Электропроводность и теплопроводность — одно из основных свойств, которое определяет области применения металла и его сплавов.

Кристаллическое строение металлов и сплавов объясняет причину каждого из обозначенных свойств и говорит о выраженности их у каждого конкретного представителя. Если знать особенности такого строения, то можно влиять на свойства образца и подстраивать его под нужные параметры, что и делают люди уже многие десятилетия.

Читать еще:  Технология производства вибропрессованной тротуарной плитки, формовка.

Связь между коэффициентами линейного расширения,

температурами плавления металлов и симметрией

Кристалл — это условное графическое изображение, построенное путем пересечения воображаемых линий через атомы, которые выстраивают тело. Другими словами, каждый металл состоит из атомов. Они располагаются в нем не хаотично, а очень правильно и последовательно. Так вот, если мысленно соединить все эти частицы в одну структуру, то получится изображение в виде правильного геометрического тела какой-либо формы. Это и принято называть кристаллической решеткой металла. Она очень сложная и пространственно объемная, поэтому для упрощения показывают не всю ее, а лишь часть, элементарную ячейку. Совокупность таких ячеек, собранная вместе и отраженная в трехмерном пространстве, и образует кристаллические решетки.

Сама элементарная ячейка – это набор атомов, которые располагаются на определенном расстоянии друг от друга и координируют вокруг себя строго фиксированное число других частиц. Она характеризуется плотностью упаковки, расстоянием между составными структурами, координационным числом. В целом все эти параметры являются характеристикой и всего кристалла, а значит, отражают и проявляемые металлом свойства. Существует несколько разновидностей кристаллических решеток. Объединяет их все одна особенность – в узлах находятся атомы, а внутри располагается облако электронного газа, которое формируется путем свободного передвижения электронов внутри кристалла.

Четырнадцать вариантов строения решетки принято объединять в три основных типа. Они следующие:

1. Объемно-центрированная кубическая.

2. Гексагональная плотноупакованная.

3. Гранецентрированная кубическая.

В зависимости от типа кристаллической решетки меняется коэффициент линейного расширения, а также температура плавления металлов. При увеличении температуры происходит расширение твердого тела, которое называют тепловым расширением. Его делят на линейное и объемное тепловое расширение. Коэффициентом линейного расширения называют физическую величину характеризующую изменение линейных размеров твердого тела при изменении его температуры. Оперируют, обычно средним коэффициентом линейного расширения. Он приведен в четвертом столбце таблицы. Коэффициент линейного расширения относят к характеристикам теплового расширения материала.

К какому типу решетки принадлежат золото и медь?

Золото и медь принадлежат к гранецентрированному кубическому типу решетки.

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ЛИНЕЙНОГО ТЕПЛОВОГО РАСШИРЕНИЯ. Методическое указание к выполнению лабораторной работы

    Ирина Евдокимова 3 лет назад Просмотров:

1 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Восточно-Сибирский государственный технологический университет» (ГОУ ВПО ВСГТУ) ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ЛИНЕЙНОГО ТЕПЛОВОГО РАСШИРЕНИЯ Методическое указание к выполнению лабораторной работы Составители: Лыгденов Б.Д., Старова О.В. Улан-Удэ Издательство ВСГТУ 006

2 Методическое указание рекомендовано для выполнения лабораторной работы студентами специальности 60 «Технология художественной обработки материалов» по курсу «Художественное материаловедение». Данное указание раскрывает некоторые вопросы теплового расширения твердых тел. — коэффициент линейного теплового расширения — линейные размеры — микрометрический индикатор — относительная погрешность

3 Лабораторная работа ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ЛИНЕЙНОГО ТЕПЛОВОГО РАСШИРЕНИЯ Все твердые тела при нагревании увеличивают свои линейные размеры. Это явление носит название теплового расширения. Тепловое расширение зависит от материала, из которого сделано данное тело. Если тело состоит из двух разнородных материалов, то в процессе нагрева эти материалы расширяются по-разному, что приводит к возникновению тепловых напряжений на границе их контакта. В ряде случаев это может сопровождаться деформацией твердого тела и даже приводить к его разрушению. Цель данной работы — определение коэффициента линейного теплового расширения некоторых твердых тел, нашедших широкое применение в художественном материаловедении (благородные металлы, нержавеющая сталь, латунь, дюраль, фарфор). Рассмотрим, с чем связано тепловое расширение твердого кристаллического тела. Повышение температуры кристалла приводит к увеличению энергии колебательного движения атомов в узлах кристаллической решетки. При этом соответственно возрастает амплитуда этих колебаний. Однако увеличение амплитуды колебаний еще не говорит об увеличении линейных размеров тела. В самом деле, если бы колебания были гармоничны, то каждый атом, на сколько бы приближался к соседнему, на столько бы отдалялся от другого, что не приводило бы к изменению среднего межатомного расстояния, а значит, и к тепловому расширению. В действительности, атомы в кристаллических 3 решетках совершают не гармонические, а ангармонические колебания. Это связано с характером взаимодействия между атомами. При сближении атомов возникают силы отталкивания, а при удалении — силы притяжения. Однако характер зависимостей этих сил от расстояния различен. Силы отталкивания более резко зависят от расстояния между атомами, чем силы притяжения. Это приводит к тому, что при увеличении амплитуды колебаний атомов вследствие нагрева рост сил отталкивания преобладает над ростом сил притяжения, т.е. атому «легче» удалиться от соседа, чем приблизиться к другому. Поэтому причина теплового расширения тел заключается в ангармоничности колебаний атомов в узлах кристаллической решетки. Количественно тепловое расширение характеризуется коэффициентом линейного расширения, который определяется следующим образом. Пусть при некоторой температуре (например, 0 С) длина тела была l 0, в результате нагрева она увеличилась и стала l t, тогда абсолютное удлинение l = lt не является характеристикой материала, так как зависит от начальной длины l 0 и температуры. Поэтому, чтобы получить характеристику материала, вводят коэффициент линейного расширения l t α =. l ( ) 0 t t Строго говоря, коэффициенты линейного расширения зависят от температуры. Однако если температурные интервалы невелики ( С), а сами температуры достаточно высоки ( С), то коэффициенты линейного расширения практически не зависят от температуры (табл. ). 4

4 Таблица. Коэффициенты линейного расширения Вещество 0 6 α, K Вещество 0 6 α, K Алюминий 6 Латунь 9 Серебро 9 Молибден 5 Золото 4 Платина 4 Железо Стекло 0 Никель 3 Хром 8 Фарфор 3 Установка (рис. ) представляет собой вертикально расположенную электрическую печку, внутри которой помещается кварцевая пробирка с четырьмя исследуемыми образцами. Для равномерного прогрева по высоте образцы Рис..Установка определения коэффициента линейного теплового расширения залиты силиконовым маслом. Изменение линейных размеров образцов регистрируется с помощью индикатора часового типа с точностью до 5 мкм. Контакт штока индикатора с образцом осуществляется посредством кварцевого цилиндрика. Измерение температуры проводится с помощью хромель-алюмелевой термопары и потенциометра типа ПП-63. Хромель-алюмелевая термопара имеет чувствительность, равную /4,6 мв/град. Таким образом, для определения температуры надо показания потенциометра ПП-63 (в мв) умножить на число 4,6. Начальная длина всех образцов l 0 = 60 мм. В кварцевую пробирку с помещенными внутри нее четырьмя образцами заливают силиконовое масло так, чтобы оно полностью покрыло образцы, затем пробирку помещают в электрическую печку. На выступающий конец одного из образцов надевают кварцевый цилиндрик и приводят его в соприкосновение со штоком микрометрического индикатора. Поворотом шкалы индикатора устанавливают стрелку на нулевую отметку. Включают электрическую печку и начинают нагревать образцы, следя за показаниями потенциометра. При достижении температуры 00 С, что будет соответствовать 4, мв, записывают удлинение образца (l 00 l 0 ), то же самое проводят при достижении температуры 00 С (8,3 мв) и 300 С (, мв). Выключают печку и дают возможность образцам остыть до комнатной температуры. Для ускорения этого процесса можно кварцевую пробирку с образцами вынуть из печки и опустить в сосуд с водой комнатной температуры. Проводят аналогичные измерения с тремя другими образцами. Полученные данные заносят в таблицу 5 6

5 образцов 3 4 Таблица. Показания индикатора, мм, Коэффициент расширения α в диапазоне температур, С при температурах, С По данным таблицы определяют для каждого материала три значения коэффициента линейного расширения в диапазоне температур: α , α , α По найденным значениям находят среднее значение. Определяют относительную погрешность косвенного измерения коэффициента линейного расширения α ( lt ) l0 ( t + t) = + +. α ( lt ) l0 ( t t) Относительную погрешность определяют для всего температурного интервала ( С). При этом за величину ( l t ) следует принять 0,0 мм, l0 = мм, t = 4,6 U, где U — приборная погрешность измерения термоэдс по шкале потенциометра ПП-63, равная 0,05 мв. Таким образом, t = 4,6Х0,05,5 С. Окончательный результат измерений коэффициентов линейного расширения для каждого материала записывается в виде α = α ± α α = α ± α ; α = α ±. 3 ; 3 3 α Контрольные вопросы.в чем заключается физическая природа теплового расширения твердых тел?. Как определяется коэффициент линейного расширения? От чего он зависит? Подписано в печать г. Формат 60х84 /6 Усл.п.л. 0,46. Тираж 00 экз. Заказ 6 7 8

Читать еще:  Удельный вес цемента: разбираемся в цифрах на упаковке

/ На сколько расширится металл.md

На сколько расширится металл

Нагрев металлов перед ковкой является важной и ответственной операцией, от которой во многом зависит не только качество будущих деталей, но также производительность труда, работа оборудования, стойкость инструмента и себестоимость продукции. В процессе нагрева изменяется строение металла, его свойства, состояние поверхностных слоев и др. Каждый сплав имеет температурный интервал обработки давлением и определенный режим нагрева. Нарушение указанных параметров нагрева ведет к снижению качества деталей, а возможно и к разрушению металла. Поэтому для будущего специалиста необходимо изучение явлений, происходящих в металле при нагревании. При нагревании металлы расширяются, при охлаждении сжимаются. Например, поковка длиной мм после охлаждения до цеховой температуры будет иметь длину мм, Если усадку металла не учесть, то получится брак поковки по размерам. Влияние усадки на форму и размеры поковки особенно сказывается при ковке заготовок деталей сложной формы с длинными отростками, так как усадка может привести к сильному короблению поковки. Очень важно учитывать усадку металла при изготовлении рабочих ручьев штампов для объемной штамповки, особенно при точной объемной штамповке дорогостоящих сплавов. Явления, происходящие при нагреве в поверхностных слоях заготовок. С повышением температуры активность взаимодействия металлов с атмосферой печи увеличивается. Толщина слоя окалины зависит от температуры и времени нагрева, расположения заготовок в печи, состава печных газов и химического состава сплава. Образование окалины ведет к потерям металла, увеличению припусков на механическую обработку, снижает производительность труда и, являясь твердым веществам, снижает стойкость инструмента при обработке давлением и обработке резанием. Нагрев углеродистых сталей сопровождается образованием рыхлого слоя окалины, который легко удаляется, но не предохраняет металл от дальнейшего окисления. Окалина у сталей, легированных хромом, кремнием, вольфрамом, никелем, имеет малую толщину, плотное строение, не растрескивается и является защитой от дальнейшего окисления. Нагрев углеродистых сталей сопровождается выгоранием углерода с поверхностного слоя на глубину до 2 — 4 мм. Уменьшение содержания углерода, называемое обезуглероживанием, ведет к снижению прочности и твердости стали и ухудшению закаливаемости детали. Обезуглероживание особенно вредно для поковок небольших размеров, имеющих малые припуски на механическую обработку и подвергаемых последующей закалке. Для крупных поковок обезуглероживание не опасно, поскольку в процессе ковки и охлаждения углерод из внутренних слоев заготовки дифундирует в наружные и химический состав сплава выравнивается. Неравномерность нагрева и выравнивание температуры по сечению заготовки. Прогрев заготовки по сечению осуществляется за счет теплопередачи от наружных слоев к внутренним. Под действием высокой температуры наружные слои расширяются больше внутренних и между ними возникают большие напряжения, которые могут привести даже к разрушению. Высокоуглеродистые и высоколегированные стали и многие сложные сплавы имеют низкую теплопроводность и во избежание образования трещин требуют медленного нагрева. Такие стали и сплавы загружают сначала в печь, имеющую невысокую температуру, некоторое время выдерживают при этой температуре и только после прогрева всего сечения начинают дальнейший подъем температуры. После того как наружные слои заготовки нагреются до ковочной температуры, заготовки оставляют еще некоторое время в печи для выравнивания температуры металла по всему сечению. Это время называется временем выдержки. Ковать неравномерно нагретую заготовку опасно из-за неравномерной по его сечению деформации металла и возможного его разрушения. При объемной штамповке и ковке в подкладных штампах неравномерный нагрев приводит к незаполнению рабочего ручья штампа и к снижению стойкости инструмента. Аналогично нагреву охлаждение поковок из легированных сталей также должно выполняться с небольшой скоростью. При быстром охлаждении возникают термические напряжения, из-за которых могут появиться трещины в поковках и привести к браку. Влияние нагрева на структуру металла. Структура металлов и сплавов и связанные с ней механические и технологические свойства зависят от химического состава сплавов; от температуры и режимов их обработки. Ниже рассмотрено влияние температуры на структуру и свойства углеродистых сталей — сплавов, чаще всего применяемых для изготовления поковок ручной ковкой. Структура стали в зависимости от содержания углерода и температуры графически описывается диаграммой состояния железо — углерод Fe — С рис. При температуре выше линии АС все стали находятся в жидком состоянии Ж , ниже этой линии из жидкого расплава выпадают твердые кристаллы аустенита А. Ниже линии АЕ весь сплав имеет структуру аустенита. В твердых растворах замещения несколько атомов основного металла замещены атомами другого компонента. При определенных соотношениях железо с углеродом образуют твердые растворы внедрения, железо с никелем — твердые растворы замещения. С понижением температуры растворимость углерода в Fey уменьшается. С понижением температуры количество цементита увеличивается, концентрация углерода в аустените уменьшается. При температуре выше линии GSE любая сталь имеет структуру аустенита. Наибольшую пластичность имеют стали в состоянии аустенита. Объясняется это тем, что, во-первых, структура металла является однородной: Перлит имеет высокую механическую прочность и низкую пластичность. Следовательно, стали нужно обрабатывать давлением при температуре выше линии РК. На диаграмме штриховой линией Тк обозначена нижняя граница температурного интервала ковки. Деформировать стали ниже этой границы, т. Температура нагрева металла ограничена не только нижним температурным пределом Тк, но и верхним пределом, называемым температурой начала ковки Тн. На диаграмме состояния см. При нагревании до более высоких температур в металле появляются два вида дефекта нагрева: При перегреве увеличиваются размеры зерен, металл приобретает крупнозернистую структуру, его пластичность начинает уменьшаться. Кроме того, поковки с крупнозернистой структурой имеют низкие механические свойства. Хотя перегрев и можно исправить дополнительной термической обработкой или ковкой, его исправление требует дополнительных расходов и времени. Нагрев до температуры, близкой к линии АЕ, является недопустимым. Такой нагрев ведет к пережогу — окислению металла по границам зерен в результате ускоренной диффузии кислорода внутрь металла. Пережог — неисправимый брак. Из-за нарушения связей между зернами при ковке такой металл разрушается полностью. На диаграмме состояния железо — углерод такой интервал определен для углеродистых сталей заштрихованной областью, расположенной между линиями Тк и Тн. Чтобы поковки имели высокие механические свойства, стремятся к тому, чтобы ковку заканчивать при температуре, близкой к температуре Тк. В этом случае в металле успеет произойти рекристаллизация, а структура останется мелкозернистой. Вы вошли как Гость Группа » Гости » RSS. Защита нефтяных резервуаров от коррозии. Конструкция железнодорожного пути и его содержание. Метеоритные кратеры на Земле. В мире застывших звуков.

  • © 2020 GitHub, Inc.
  • Terms
  • Privacy
  • Cookie Preferences
  • Security
  • Status
  • Help
  • Contact GitHub
  • Pricing
  • API
  • Training
  • Blog
  • About

You can’t perform that action at this time.

You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector