Yoga-mgn.ru

Строительный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электроискровая и электроимпульсная обработка металла

Реферат на тему: Электроискровая и электроимпульсная обработка металла

Раздел: Металлургия ВСЕ РАЗДЕЛЫ

Следовательно, использование электроэрозионных способов обработки будет развиваться с повышением твердости и вязкости обрабатываемых материалов, с усложнением формы детали и обрабатываемых поверхностей (полости сложной конфигурации, отверстия с криволинейной осью, отверстия весьма малого диаметра, тонкие и глубокие щели простой и сложной формы и т. п.), наконец, с улучшением технико-экономических показателей электроэрозионных способов обработки — повышением производительности, чистоты поверхности, точности, стойкости инструмента и снижением энергоемкости процесса. Особо перспективным является использование электрических способов для обработки деталей из твердых сплавов, жаропрочных сталей и специальных трудно обрабатываемых сплавов, получающих все большее применение в связи с повышением давлений, температур и скоростей в машинах и аппаратах. Отдельные элементы разновидностей и частные применения электроэрозионной обработки металлов были известны давно. Например, резка металлов с наложением электрического тока (так называемая, электрофрикционная резка, близкая по схеме и параметрам к электроконтактной обработке) применялась около 70 лет тому назад; поверхностное упрочнение угольным электродом с помощью электрического тока по методу Д. Н. Дульчевского предложено в 1928 г. и др. Однако быстрое развитие способов электроэрозионной обработки металлов и превращение их в самостоятельную отрасль электротехнологии началось вскоре после изобретения в 1943 г. Б. Р. и Н. И. Лазаренко электроискрового способа и В. Н. Гусевым — анодно-механического способа. Эти способы были дополнены в 1948 г. новым применением электроконтактной обработки (заточка по методу инж. М. Е. Перлина), получившим дальнейшее развитие в работах Харьковского электротехнического института, Харьковского подшипникового завода (обработка шаров по методу инж. Б. П. Гофмана), ХТЗ имени Орджоникидзе (обработка траков), научно- исследовательского института Минсудпрома (обработка гребных винтов) и др. Развитие электроискрового и анодно-механического способов шло по линии создания многочисленных опытных конструкций приспособленных и специальных электроэрозионных станков, автоматических регуляторов и освоения новых технологических операций. Технические характеристики этих способов — производительность, стойкость инструмента, энергоемкость, удобство в эксплуатации — за этот период не получили сколько-нибудь существенного изменения в лучшую сторону. В электроискровом способе, основанном на применении зависимых (конденсаторных) релаксационных генераторов импульсов, практически исчерпаны возможности дальнейшего повышения производительности, снижения износа инструмента и энергоемкости. Оказались необходимыми принципиально новые технические решения и отказ от конденсаторных схем. Первые шаги в этом направлении были сделаны в 1950 г. в Конструкторском Бюро Министерства Станкостроительной и Инструментальной Промышленности (КБ МСиИП) в области создания новых источников питания импульсным током (независимых генераторов импульсов) для прошивочно-копировальных работ и Одесским политехническим институтом в области разработки источников импульсного тока для обработки вращающимся инструментом на мягких режимах (для изготовления надфилей).

Применение более жестких режимов при обработке твердых сплавов лимитируется образованием на них трещин. Электроискровой способ преимущественно применяется в настоящее время для прошивочных работ, изготовления полостей сложной конфигурации и т. п. операций, а также для шлифования тел вращения. Электроимпульсный способ. Ряд характеристик этого способа изложен выше. Электроимпульсная обработка имеет значительные преимущества по сравнению с электроискровой. Улучшение технологических характеристик нового способа обработки обусловлено применением специальных независимых генераторов импульсов. Сообщаемые ниже технологические характеристики способа отражают итоги первых работ и далеко не полностью характеризуют возможности электроимпульсного способа. Производительность на жестких режимах электроимпульсного прошивочно- копировального станка КБ МСиИП с ламповым генератором импульсов превышает 5000 мм3/ мин при получении чистоты поверхности вне класса. Указанная производительность может быть повышена на соответствующей площади до нескольких десятков кубических сантиметров в минуту при увеличении импульсной мощности. Энергоемкость на жестких режимах составляет 8-12 квт- ч/кг диспергированного металла, относительный износ инструмента достигает 0,2 — 20%. Чистота поверхности, получаемая на указанном станке на мягких режимах, соответствует 4-му классу (Нср = 25-30 мк) при производительности: по стали 6-8 мм3/мин, по твердому сплаву, примерно, в 2-3 раза меньше. Дальнейшее снижение режима обработки для получения большей чистоты поверхности приводит к еще большему падению производительности и увеличивает энергоемкость. Приведенные технологические характеристики мягких режимов в настоящее время значительно улучшены путем применения новых моделей машинных генераторов импульсов, разработанных Харьковским политехническим институтом имени Ленина, ЭНИМС и КБ МСиИП, но все же проблему резкого повышения производительности процесса обработки на мягких режимах нельзя считать еще решенной, хотя принципиальные пути решения этой задачи намечены. Область преимущественного применения электроимпульсного способа та же, что и электроискрового, но, учитывая более высокие технико- экономические показатели, возможно более широкое его применение. ПРИМЕРЫ НЕКОТОРЫХ ОПЕРАЦИЙ Накопившийся за последние годы опыт позволяет установить области, где применение электрических способов оказалось рентабельным, и области, где имеются перспективы их внедрения при улучшении технико-экономических характеристик способа, усовершенствовании оборудования и разработке новых технологических приемов. К числу операций, которые целесообразно в настоящее время выполнять на универсальных прошивочно-копировальных станках (электроискровых и электроимпульсных) относятся: изготовление (прошивание) отверстий, выборка внутренних полостей и получение наружных поверхностей деталей. Чем сложнее конфигурация детали и чем труднее осуществляется механическая обработка, тем выгодней применение этих операций на электроэрозионных прошивочно- копировальных станках. На универсальных отрезных, преимущественно анодно-механических, станках целесообразно выполнение отрезных работ на заготовках большого и малого сечения, особенно из трудно обрабатываемого материала, фасонная вырезка из листового материала (ленточные станки и др.). Имеются отдельные операции, выполнение которых оказалось целесообразным на специализированных электроэрозионных станках.

То же относится и к другим комбинациям четырех основных способов электроэрозионной обработки. Рассмотрим принципиальные отличия разновидностей размерной электроэрозионной обработки внутри второй и третьей групп. Электроискровой и электроимпульсный способы отличаются, как ниже будет показано подробнее, устройством для генерирования импульсов, параметрами и формой импульса, а также полярностью электродов. Диодно-механический и электроконтактный способы отличаются по роду применяемого тока (в первом случае — постоянный, во втором — переменный, и, реже — постоянный) и по виду рабочей среды (в первом случае — жидкое стекло, во втором — воздух, вода, масло и др.) Следствием этих отличий является, в общем, ухудшение технических характеристик электроконтактного способа по сравнению с анодно-механическим (меньшая производительность при одинаковой чистоте поверхности, больший износ инструмента, ограниченная номенклатура обрабатываемых материалов), при более благоприятных условиях эксплуатации и большей простоте установки в целом. Это обусловливает и различные области их применения. Как следует из изложенного, независимо от способа подвода энергии, известные электроэрозионные способы размерной обработки металлов имеют в основе единую физическую природу — металл удаляется в результате термического действия электрического тока. Отличия заключаются в механизме удаления снятого металла и в технических средствах, обеспечивающих выполнение трех условий размерной электрообработки. Сравнение удельных расходов энергии на съем металла различными способами показывает, что наибольший расход энергии имеет место при электрохимическом растворении (3,85 квт-ч/кг), затем при плавлении (0,35 квт-ч/кг). При механической обработке удельный расход энергии в значительной степени зависит от вида обработки. Так, при шлифовании он составляет, в среднем, 2 квт-ч/кг, строгании, сверлении и фрезеровании 0,20-0,25 квт- ч/кг, точении 0,045 квт-ч/кг. При сопоставлении этих данных следует иметь в виду, что удельный расход энергии для электрохимического растворения и плавления практически не зависит от механических свойств обрабатываемых материалов, в то время, как при механической обработке увеличение, например, твердости обрабатываемого материала резко повышает удельный расход энергии. Необходимо, однако, отметить, что фактические удельные расходы в электроэрозионных и электрохимических установках значительно выше приведенных данных вследствие неизбежных потерь энергии при ее преобразовании и передаче. Эти данные определяют с энергетической точки зрения целесообразность применения электрических методов для обработки токопроводящих материалов, трудно поддающихся механической обработке. С учетом свойства отображения (копирования), осуществляемого на электроэрозионных станках по предельно простой кинематической схеме и без силового привода, и возможности выполнения ряда специальных операций, недоступных механической обработке, следует расширить целесообразную область применения электроэрозионных способов и на детали из обычных материалов, но обладающих сложной формой, затрудняющей их механическую обработку.

Читать еще:  Ленточный шлифовальный станок на базе точильного

Различают электроизоляционные материалы твердые (бумаги, слюды, лакоткани и т. д.), жидкие (напр., трансформаторные масла) и газообразные (воздух, элегаз и др.). См. также Изоляция электрическая. ЭЛЕКТРОИМПУЛЬСНАЯ ОБРАБОТКА — разновидность электроэрозионной обработки; осуществляется импульсами дугового разряда. ЭЛЕКТРОИНДУКТИВНАЯ ДЕФЕКТОСКОПИЯ (токовихревая дефектоскопия) — основана на взаимодействии полей вихревых токов, возбуждаемых датчиком дефектоскопа в контролируемой детали, с этим же датчиком. Позволяет автоматизировать контроль качества проволоки, труб и т. д. при их производстве, сортировать некоторые материалы по маркам и др. ЭЛЕКТРОИСКРОВАЯ ОБРАБОТКА — разновидность электроэрозионной обработки; осуществляется искровым разрядом. ЭЛЕКТРОКАПИЛЛЯРНЫЕ ЯВЛЕНИЯ — изменение поверхностного натяжения на границе раздела двух фаз (напр., твердой и жидкой) вследствие скачка электрического потенциала на этой границе. Обусловлены притяжением противоположных зарядов двойного электрического слоя. Играют важную роль в электродных процессах, при флотации и др

Электроискровая и электроимпульсная обработка металла

Физические условия осуществления размерной электроэрозионной обработки металлов. Группы электрической обработки металлов. Электротехнологические характеристики способов обработки металлов. Область применения размерной электроэрозионной обработки.

  • посмотреть текст работы «Электроискровая и электроимпульсная обработка металла»
  • скачать работу «Электроискровая и электроимпульсная обработка металла» (реферат)

Подобные документы

Сущность и назначение, физические условия и основные этапы осуществления размерной электроэрозионной обработки, ее разновидности и сферы использования. Примеры некоторых операций. Анализ преимуществ применения данного типа обработки перед другими.

контрольная работа, добавлен 06.10.2010

Описания способов обработки металлов, при осуществлении которых изменение структуры и качества поверхностного слоя детали являются следствием действия электрического тока. Обзор разновидностей и физических условий размерной электроэрозионной обработки.

реферат, добавлен 30.10.2011

Необходимость применения новых конструкционных материалов, обладающих особыми свойствами. Электроискровая обработка металлов. Схема анодно-механической обработки. Использование энергии ультразвуковых колебаний. Обработка металлов световым лучом (лазером).

реферат, добавлен 13.02.2016

Общая характеристика размерной обработки металлов. Классификация металлорежущих станков и движений в них. Особенности режимов резания, шероховатость поверхности. Технологические возможности способов резания. Методы отделочной обработки поверхностей машин.

реферат, добавлен 26.07.2010

Сущность холодной и горячей обработки металлов давлением. Способы обработки металлов давлением. Процесс прокатки металла. Основные стадии технологического процесса волочения. Схема прессования полого профиля. Ковка как вид горячей обработки металлов.

реферат, добавлен 29.12.2013

Механизм электрической эрозии, его основные характеристики. Методы оптимизации размерной электроэрозионной обработки, путем обеспечения устойчивости рабочих процессов и качества обрабатываемой поверхности на основе подходов искусственного интеллекта.

автореферат, добавлен 16.02.2018

Электроэрозионная обработка как один из самых перспективных и быстро развивающихся видов обработки металлов. Анализ способов обработки узла детали «Корпус уплотнения». Изготовление пазов методом электроэрозионной прошивки вместо механической обработки.

статья, добавлен 20.02.2019

Общая характеристика процесса электроэрозионной обработки. Требования к рабочим средам и жидкостям. Обзор видов электроэрозионного оборудования, основные типы станков. Электроимпульсная обработка, основанная на использовании импульсов дугового разряда.

реферат, добавлен 02.02.2016

Сущность и назначение электроэрозионной обработки. Стадии электроэрозионной обработки. Режим электроискровой обработки. Зависимость величины эрозии стального электрода (анода) от энергии и длительности одиночного импульса. Параметры рабочих импульсов.

реферат, добавлен 27.04.2015

Улучшение качества, повышение точности обработки, производительности и уменьшение количества отходов за счет применения новых технологий обработки металлов. Токарно-фрезерная обработка металлов, энергосберегающие методы пластического деформирования.

статья, добавлен 04.05.2018

  • 1
  • 2
  • 3
  • 4
  • »
  • главная
  • рубрики
  • по алфавиту
  • вернуться в начало страницы
  • вернуться к подобным работам
  • Рубрики
  • По алфавиту
  • Закачать файл
  • Заказать работу
  • Вебмастеру
  • Продать
  • посмотреть текст работы
  • скачать работу можно здесь
  • сколько стоит заказать работу?

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.

2.2. Электроимпульсная обработка металлов

Электроимпульсная обработка металлов представляет собой разновидность электроэрозионной обработки. По сравнению с электроискровой обработкой процесс характеризуется увеличением мощности единичных разрядов, длительностью импульсов, обратной полярностью (анод-инструмент, катод-заготовка), применением пониженных напряжений и относительно большими значениями средних токов. В результате производительность процесса по сравнению с электроискровой обработкой во многих случаях в 8…10 раз выше. Этот метод позволяет производить обработку на больших площадях (до 240 см 2 ) с высокой производительностью (до 5000 мм 3 /мин); шероховатость обработанной поверхности на 1…3 класса ниже, чем при обработке электроискровыми методами (рис. 3).

Рис. 3. Схема электроимпульсной обработки.

На рис. 3 приведена одна из схем электроимпульсного метода обработки металлов. Электрод-инструмент 3 и электрод-деталь 4, погруженные в ванну 5 с жидкостью, присоединяются к импульсному генератору постоянного тока 2, приводимому в действие от электродвигателя 1. Жидкой средой служат масла низкой вязкости (индустриальное, трансформаторное), керосин и др. В межэлектродном пространстве возникают электрические разряды определенной длительности, сопровождающиеся выделением теплоты. Под воздействием теплоты происходит разрушение металла на поверхности электродов. Электрические режимы назначают в зависимости от характера обработки и от площади обрабатываемой поверхности. При площади обрабатываемой поверхности 20…240 см 2 черновую обработку осуществляют при токе 50…500 А, а чистовую – при 5…50 А. Верхнее значение напряжения составляет 24…26 В, а нижнее – 11…12 В.

Недостатком электроискрового и электроимпульсного методов обработки является малая стойкость электрода-инструмента, который приходится заменять после обработки 5…10 деталей.

Электроимпульсную обработку проводят на специальных электроимпульсных станках, на которых обрабатывают пресс-формы, вырубные просеченные и чеканочные штампы и прошивают отверстия любой конфигурации в закаленных деталях.

2.3. Ультразвуковая обработка

Ультразвуковая обработка основана на хрупком разрушении мате- риала зерном абразива, которое внедряется в обрабатываемый материал под ударами специального акустического концентратора-инструмента, колеблющегося с частотой 18…30 кГц. Обработка называется ультразвуковой в связи с частотой колебаний концентратора-инструмента, которая лежит в нижней части ультразвукового диапазона частот. Способ обработки был запатентован в Англии Ферером в 1945 году.

Начиная с 1951-1953 гг. начались интенсивные исследования физической сущности процесса ультразвуковой обработки, разработка технологии и создание оборудования.

При ультразвуковом методе обработки материалов инструменту придают колебания вышеуказанной частоты с небольшой амплитудой (0,01…0,06 мм). Жидкость (чаще вода), омывающая инструмент и обрабатываемую деталь, содержит большое количество мелких абразивных зерен зернистостью 150…180 мкм. Массовое соотношение абразива к воде от 1 : 1 до 1 : 2. Эти зерна под воздействием ультразвуковых колебаний попадают в пространство между электродами и осуществляют съем металла. В качестве абразивных зерен используют абразивные частицы карбида бора, карбида кремния и другие материалы. Инструменты, имеющие форму в соответствии с формой обрабатываемой поверхности, обычно изготовляют из инструментальной стали.

Для получения ультразвуковых колебаний применяют пьезоэлектрические и магнитострикционные преобразова­тели. Применение пьезоэлектрических преобразователей основано на способности некоторых материалов (кварца, турмалина) изменять свои геометрические размеры (сжи­маться и расширяться) под воздействием электрических зарядов. В основу магнитострикционного преобразователя положено использование свойств некоторых материалов (никеля, кобальта, пермалоя и др.) деформироваться (сжи­маться и расширяться) под воздействием магнитного поля. Трубку из указанных материалов помещают в катушку, через которую проходит переменный ток высокой частоты. Под воздействием магнитного поля геометрические размеры трубки меняются с ультразвуковой частотой. Этот метод чаще используют при обработке сверлением и фрезеровани­ем деталей из стекла и кварца, полупроводников, алмазов, реже из твердых сплавов и труднообрабатываемых сталей.

Ультразвуковая обработка стальных деталей обеспечивает получение шероховатости поверхности до 9-го класса (Ra= 0,32 мкм) и 6-го квалитета точности.

На рис. 4 приведена схема установки с магнитострикционным преобразователем.

Читать еще:  Машины контактной сварки — задачи и разновидности

Рис. 4. Схема ультразвуковой установки.

Электрические колебания от звукового генератора 1 усиливаются усилителем 2 и поступают в катушку 6 вибратора 4, который, создавая переменное магнитное поле, заставляет сердечник и инструмент 7 колебаться с высокой частотой. Постоянные магниты 5 получают питание от селенового выпрямителя 3.

Производительность ультразвуковой обработки зависит от обрабатываемого материала и мощности установки. Так, удельная производительность при обработке стекла составляет до 4000, а твердого сплава – до 40 мм 3 /мин кВт.

Современные способы обрабатывания металлических изделий

Обработка металла – технологический процесс изменения его размеров, форм и свойств. Во время металлообработки меняется не только форма и размер материал, но и его физико-химические свойства. Известны такие виды металлообработки: механическая, электрическая, дробеструйная. От качества выполненных работ зависит надежность и безопасность изделий, в конструкцию которых входят заготовки.

Электроискровая и электроимпульсная обработка

Первые попытки обрабатывать металл датируются XII веком до н. э. Приблизительно 3 тыс. лет назад народы Индии, Кавказа и Анатолии первые начали выплавлять ценный ресурс в сыродутной печи. Стоит отметить, что приблизительно в то же время на Африканском континенте чуть южнее Сахары местные народы научились ковать такое же железо. С этого времени и начинается история отделки металлических изделий. Сегодня она усовершенствовалась настолько, насколько это возможно.

Механический способ металлообработки

Механическая обработка металлов – процесс изменения форм и размеров металлических изделий. Сегодня практикуется два вида обработки деталей: давлением и резкой. Названные методы металлообработки включают такие процессы: гибка, штамповка, высадка и другие.

Станок для холодной ковки

Механическая обработка металлических изделий состоит из таких технологических процессов:

  • Ковка. Материал раскаляется до рекристаллизации, а потом обрабатывается ударами молота и других тяжелых инструментов. Даже в наши дни технология считается эффективной, поскольку позволяет создавать прочные монолитные конструкции без потери уникальных свойств;
  • Механическая ковка – усовершенствованная технология отделки. Ее суть сводится к мощному механическому действию на деталь при помощи прессовочных станков. На производстве используют гидравлические, винтовые, фрикционные и другие виды станков.

Резка – сложный процесс, требующий высокотехнологических лазерных или плазменных станков. Способы этой отделки позволяют производить резку с очень ровным швом. Плазменные и лазерные станки много стоят, поэтому их в домашних условиях практически не применяют. Механические способы резки на небольших объектах и домашних условиях производятся на токарных, шлифовальных, сверлильных и других станках. Механическая обработка металлов ручным способом имеет массу достоинств и несколько недостатков.

Холодная ковка металла в домашних условиях

К достоинствам относятся высокое качество, дешевизна и скорость отделки металлических деталей. Из минусов можно выделить сильные повреждения обрабатываемого материала. Глубокие разрезы и шероховатая поверхность способствует развитию коррозии и началу ржавления металлических изделий.

Дробеструйный способ металлообработки

Дробеструйная обработка металла – это разновидность холодной обработки абразивными материалами (твердыми микроэлементами). Ударяясь об металл на высокой скорости, абразивные компоненты приводят к образованию трещин.

С каждым ударом абразивные элементы проникают все глубже, обрабатывая металл по заданным параметрам.

Верхний слой обрабатываемого материала под давлением внутренних слоев постоянно делает попытки вернуться в исходное положение, абразивные же частицы препятствуют обратному выгибанию. Противоборство приводит к формированию поверхностного слоя с высоким сжимающим напряжением.

Дробеструйная обработка очищает метал и покрывает его грунтом

Для чего нужен слой со сжимающим напряжением? Известно, что все коррозийные процессы зарождаются на поверхности, однако, на сжимающих поверхностях щели не образуются. Таким образом, дробеструйные виды обработки способствуют значительному усилению устойчивости металлических деталей к коррозии и ржавлению. Кроме этого, абразивные частицы эффективно удаляют различные неровности – стружку, окалины, ржавчину.

Технология позволяет работать с материалами таких параметров: ШхВхГ – 800х1100х800, максимальный вес обрабатываемого изделия: 500 килограмм. Дробеструйная отделка не лишена недостатков. Например, технология совершенно не подходит для работы с малым объемом работ. Кроме этого, она дробеструйная обработка металлических изделий не приспособлена для обрабатывания тонких листов.

Электрические способы металлообработки

Инновация в виде электрической обработки позволяет создавать детали с любыми формами. Электрическая обработка металлов широко применяется в машиностроении, изготовлении техники. Практика показала, что крупные предприятия постепенно переходят на высокотехнологические станки.

Токарно-фрезерный станок CTX gamma 2000 TC

Способы электрической обработки:

Лазерная обработка металла

  • Электроэрозионный метод применяется для получения сложных фигур, пазов, гравированных поверхностей и штампов. Станки воздействую на деталь посредством электроэрозии – процесс, когда заряд электродов разрушает поверхность металла. Суть процесса: заготовка кладется в емкость с диэлектриком, где происходит сближение катодов и анодов, в результате чего происходит нагревание материала вплоть до 10 тыс. градусов. От раскаленной поверхности начинают отслаиваться частички металлического изделия. Нагретые до 10 тыс. градусов частички охлаждаются в жидкости и падают на дно емкости с жидкостью; Электрохимическая обработка металлов
  • Электрохимическая обработка. Такие способы обработки базируются на использовании проводящих ток жидкостях. Воздействие тока со всех сторон способствует эффективной полировке, затачиванию, гравировке и очистке материала от оксидов и ржавчины. Кроме этого, электрохимические способы обработки позволяют менять размеры деталей. Для достижения такого эффекта применяют специальные инструменты для снятия растворенного слоя материала;
  • Анодно-механические способы соединяют в себе оба метода обработки. Только в этом случае анодом выступает заготовка, а катодом – вращающийся элемент. Станок пропускает через катод и анод постоянный ток. Электричество плавит металл, образуя на его поверхности невосприимчивую к току пленку. Изолятор убирается механическим крутящимся инструментом. Технология позволяет обрабатывать металлы с разными физико-химическими свойствами.

Схема электрохимической обработки

  • Возможность работать с чистым железом и его сплавами с разной прочностью;
  • Технология значительно сокращает количество отходов, поэтому разные способы электрических методов отделки широко применяются в ювелирном деле;
  • Высокий уровень автоматизации;
  • Станки не нуждаются в наличии прочных кристаллов или дорогих абразивов, различные виды которых дорого стоят на строительных рынках;

Электроискровая обработка металлов не лишена недостатков, в частности, низкой скорости работы и высокого потребления энергии. К недостаткам также относится и стоимость электрических станков. Что ставит крест на использовании высокотехнологического оборудования на мелких предприятиях и в домашних хозяйствах. Стоит отметить, что электрическая обработка не применяется для сплавов, поскольку ток изменяет физико-химические свойства деталей.

Видео: Электроискровая обработка металла

Электроимпульсная обработка металлов

Электроэрозионными способами обработки металла называют такие, в основу которых положено действие законов эрозии – при прохождении через электроды импульсов электрического тока происходит разрушение таких электродов.

Электроимпульсная обработка металлов относится к одному из электроэрозионных методов. Многие семинары выставки «Металлообработка» посвящены именно этому.

Различают такие электроэрозионные методы:

  • электроискровой,
  • электроимпульсный,
  • высокочастотный электроискровой,
  • высокочастотный электроимпульсный,
  • электроконтактная обработка.

Во время проведения электроимпульсной обработки металлов получают дуговой разряд от применения электрических импульсов очень большой длительности (500 – 10 000 мкс).

Следует обратить внимание на то, что на соблюдение точности параметров и шероховатости поверхностей, которые обрабатываются, влияет выбранный метод обработки.

Так, например, для обработки штампов целесообразнее применять электроимпульсную обработку. В ходе этой обработки снятие металла осуществляется в десятки раз быстрее, чем во время электроискровой обработки. Однако максимально эффективен электроимпульсный метод при выполнении работ по обработке небольших отверстий сложной формы.

Отличительной особенностью электроимпульсной обработки металлов является использование однополярной формы импульсов, что способствует концентрации всей энергии исключительно на процессе разрушения металла обрабатываемой детали.

Это позволяет повысить активность процесса обработки, снизить расход электродов, а также существенно снижает температуру межэлектродного пространства, а значит, дает возможность применить графитированные электроды, которые обеспечивают высокий уровень обработки. В этом можно убедиться после ознакомления с тематическими выставочными стендами.

Читать еще:  Оборудование для холодной ковки: разновидности станков и их изготовление

В целом, электрическая обработка металлов подразделяется на такие группы:

1. Контактная подача энергии – это электромеханическая обработка. Недостатком этой группы является то, что снимание металла осуществляет резец, у которого режущая кромка выступает одновременно и поверхностью контакта. Это приводит к тому, что незначительный спад напряжения на месте контакта требует ввода больших токов, которые позволят создать необходимый нагрев. Но в этой ситуации резец вынужден работать в условиях, которые тяжелее, чем у детали. В результате режущая кромка разогревается, а стойкость резца снижается.

2. Подача энергии по каналу разряда – это разновидности электроискровой и электроимпульсной обработок.

3. Комбинированная подача энергии – объединяет диодно-механическую и электро-контактную обработку.

Характеристика и область применения электроимпульсной обработки металла

Сегодня электроискровые и электроимпульсные методы успешно используются в прошивочно-копировальных станках универсального типа, что осуществляют такие виды работ:

  • прошивка отверстий,
  • образование внутренних полостей,
  • обработка внешних поверхностей деталей.

Кстати, именно непростая форма заготовок и большие трудности механической обработки требуют проведения этих работ с использованием электроэрозионных станков.

Иногда используют станки переносного типа и исправляют ими образовавшийся в деталях брак, а также выполняют несложные копировальные операции.

Однако для осуществления отрезных операций с заготовками разных сечений или резания листового металла разного фасона целесообразнее использовать универсальные отрезные станки.

Среди всего разнообразия операций есть и такие, что наилучшим образом выполняются только на электроэрозионных станках узкой специализации. Это, например, работы, связанные с извлечением поломанного инструмента, а также производство сеток и разной формы щелей в листовом металле.

Таким образом, применение электроимпульсного способа позволило повысить производительность операций по обработке металла с одновременным достижением уменьшения износа рабочих инструментов и увеличения качества изготовления и ремонта изделий.

Больше о методах электроимпульсной обработки металлов можно узнать на ежегодной выставке «Металлообработка».

Справочная информация — электроэрозионная обработка металла

Электроэрозионную обработку металла достаточно широко применяют для изменения размеров металлических деталей, не нарушая их физических свойств. Такой процесс осуществляется при помощи специального оборудования и требует хорошего знания необходимых технологий.

Кроме того, такая обработка дает возможность получить отверстия нужной формы и конфигурации, при необходимости – сделать фасонные полости, и изготовить профильные пазы и канавки на заготовках, созданных на основе твердых сплавов.

Такое электроэрозионное воздействие делает различные инструменты гораздо прочнее, обеспечивает производство качественного электропечатания, высокоточного шлифования, осуществлять резку деталей и многое другое. Выполняется обработка при полном соблюдении всех необходимых правил техники безопасности.

Принцип работы

Перед тем как приступить к выполнению этого вида обработки, необходимо вначале правильно собрать все требуемые элементы в единую цепь и предварительно подготовить детали, которые понадобятся для работы. На сегодняшний день промышленные предприятия используют разные виды электроэрозионного воздействия.

Нужно отметить, что важнейшим элементом в схеме, необходимой для выполнения электроэрозионной обработки, является электрод, который должен иметь достаточную эрозионную стойкость. В этом случае в качестве электрода можно использовать такие металлы, как:

  • графит;
  • медь;
  • вольфрам;
  • алюминий;
  • латунь.

С точки зрения химии, такой метод термического воздействия на металл способствует разрушению его кристаллической решетки, благодаря чему высвобождаются некоторые категории ионов.

Довольно часто, чтобы обработать металл, применяют электроискровой и электроимпульсный методы. Также встречаются электроконтактный и анодно-механический способы.

Если для деталей из металла потребуется черновая обработка, то обычно применяют электроимпульсную схему. При этом во время работ температура вырабатываемых импульсов может достигать 5 000 градусов. Это увеличивает такой параметр, как производительность.

Если требуется обработать заготовки с небольшими размерами и габаритами, то в основном используется электроискровой способ.

Электроконтактная обработка применяется при работе со сплавами, осуществляемой в жидкой среде. Необходимо отметить, что приобретенные свойства металла после такого воздействия могут по-разному отразиться на эксплуатационных характеристиках деталей.

Практически всегда из-за воздействия токов и высоких температур у обрабатываемых деталей очень сильно повышается прочность, а в самой структуре сохраняется мягкость.

Виды используемого оборудования

Известно, что существуют разнообразные способы и методы обработки поверхностей металлов, и такой вид считается более эффективным, чем механический. В основном это связано с тем, что применяемый для проведения механической обработки инструмент стоит значительно дороже, чем проволока, используемая при электроэрозионной обработке.

Промышленные предприятия для электроэрозионной обработки металла применяют специальное оборудование, такое как:

  • проволочно- электроэрозионное;
  • копировально-прошивочное.

Если возникает необходимость изготовить детали со сложной формой и пресс-формы, а также для производства некоторых материалов с высокой точностью обработки, применяют проволочно- электроэрозионные агрегаты. Чаще всего такое оборудование используется для изготовления различных деталей для электроники, самолетов, и даже космической сферы.

Копировально-прошивочные агрегаты в основном применяются для серийного и массового производства деталей. Благодаря таким станкам получаются довольно точные сквозные контуры и мелкие отверстия, что с успехом используется при изготовлении сеток и штампов в инструментальной промышленной сфере. Такое оборудование подбирают, ориентируясь на поставленные цели и финансовую окупаемость. Электроэрозионная обработка металла считается сложным и довольно трудоемким рабочим процессом.

Такие работы невозможно выполнить в домашних условиях. Выполнять работы на станках для обработки деталей имеют право только аттестованные и квалифицированные специалисты, имеющие достаточный опыт работы в этой сфере.

Выполняя электроэрозионную обработку, не стоит забывать о технике безопасности и использовании спецодежды.

Преимущества электроэрозионной обработки

Такие работы должны осуществляться только на специальном оборудовании под обязательным присмотром квалифицированного специалиста, имеющего соответствующий допуск. Хотя такой способ делает заготовку более точной и качественной, промышленные предприятия предпочитают применять механическую обработку металла.

Поэтому необходимо отметить основные достоинства электроэрозионного воздействия на разнообразные виды заготовок. Используя такой метод, практически всегда удается добиться самого высокого качества поверхности металла, в результате чего она становится максимально точной и однородной. При этом полностью исключается необходимость проведения финишной обработки. Также этот метод гарантирует получение на выходе поверхности разнообразной структуры.

Также к достоинствам электроэрозионной обработки металла относят возможность осуществлять работу с поверхностью любой твердости.

Электроэрозионное воздействие полностью исключает возникновение деформации поверхности у деталей, имеющих небольшую толщину. Это возможно из-за того, что при таком методе не возникает никакой механической нагрузки, а рабочий анод имеет минимальный износ. Кроме того, электроэрозионная обработка способствует получению поверхности разнообразных геометрических форм и конфигураций при минимальных усилиях.

Также к преимуществам такого процесса относят полное отсутствие шума при работе на специальном оборудовании.

Конечно, есть и недостатки при электроэрозионном воздействии на деталь из металла, но на ее эксплуатационных свойствах сказываются они несущественно.

Технология обработки

Чтобы до конца выяснить все преимущества электроэрозионной обработки и понять принцип воздействия на металлическую заготовку, следует более подробно рассмотреть следующий пример.

Итак, простая электроэрозионная схема должна обязательно состоять из следующих элементов:

  • электрод;
  • конденсатор;
  • емкость для рабочей среды;
  • реостат;
  • источник,
  • обеспечивающий электропитание.

Питание этой схемы обеспечивается напряжением импульсного типа, которое должно иметь разную полярность. Благодаря этому можно получить электроискровый и электроимпульсный режимы, которые требуются для работы.

Во время подачи напряжения осуществляется зарядка конденсата, от которого на электрод поступает разрядный ток. Этот электрод заранее опускают в емкость с заготовкой и рабочим составом. Как только на конденсаторе напряжение достигнет нужного потенциала, происходит пробой жидкости. Она начинает очень быстро нагреваться до температуры кипения, а также в ней возникает пузырь из газов, который способствует локальному нагреву заготовки. В свою очередь, у заготовки происходит плавление самых верхних слоев, что обеспечивает получение необходимой формы.

Изготовление штамповой оснастки, шестеренок, электроэрозионная обработка, металлообработка, лазерная сварка, производство инструмента для кабельной промышленности

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector