Yoga-mgn.ru

Строительный журнал
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Асинхронный двигатель — принцип работы и устройство

Асинхронный двигатель устройство и работа

Асинхронный двигатель принцип работы и устройство

Напряжение от источника питания прикладывается к обмотке статора, которая намотана как три группы катушек индуктивности. Под действием этого напряжения через обмотку потечет переменный трехфазный ток, который и создаст вращающееся магнитное поле. В момент пересечении замкнутой обмотки ротора, это магнитное поле, в соответствии с законом об электромагнитной индукции, сгенерирует в ней электрический ток. Взаимодействие вращающегося магнитного поля статора и тока ротора генерирует вращающийся электромагнитный момент, который и приводит ротор в движение. Благодаря сумме этих моментов, создаваемых разными проводниками, появляется результирующий момент заставляющий вращаться ротор в том направлении, в котором находится электромагнитное поле в статоре. Ротор и магнитное поле вращаются с разными скоростями, т.е. асинхронно. У этого типа электрических двигателей скорость, с которой будет вращаться ротор, всегда будет ниже скорости, с которой вращается поле в статоре электродвигателя.

С самого начала вращения ротор может осуществить механическую работу с помощью соединенного с ним вала, который передает вращательное движение машине, насосу, вентилятору и т.п. Принцип работы асинхронного электродвигателя отлично рассказывается в видео, чуть ниже:

АД Устройство

Асинхронный двигатель с фазным ротором используются в приводах, которым необходим большой пусковой момент – лифты, краны, и т.п, но при ограниченном номинале значение тока запуска.

Основные компонентами любого асинхронного двигателя являются ротор и статор, разделяемые воздушным промежутком. Другими частями необходимой составляющей, являются магнитопровод и обмотки, остальные компоненты лишь конструктивные, задача которых обеспечить требуемую жесткость, прочность, возможность вращения и стабильность двигателя

Статор – неподвижная часть электродвигателя, на внутренней стороне которого имеются обмотки. Обмотка статора — это обычно трехфазная обмотка, в которой проводники распределены достаточно равномерно по всей площади статора и уложены пофазно в специальных пазах, сделанных с угловым расстоянием 120 градусов. Статорные фазы соединяются методом «звезды» или «треугольника» — и подключены к трехфазному питанию. В процессе вращения в обмотках возбуждения, осуществляется перемагничивание магнитопровода статора, поэтому он изготавливается из отдельных пластин из специальной электротехнической стали – таким образом удается существенно снизить неизбежные магнитные потери.

Асинхронный двигатель с фазным ротором устройство: на роторе находятся три фазные обмотки, подключенные обычно по схеме «звезда». К медным кольцам закрепленным на валу и изолированных от сердечника ротора, подключены концы фазных обмоток. Благодаря такому устройству и конструкции, асинхронный двигатель с фазным ротором получил название – двигатель с контактными кольцами.

Асинхронный двигатель с фазным ротором особенности запуска

Асинхронные двигатели имеют очень простое устройство, их достаточно легко обслуживать в процессе эксплуатации, а главное низкую себестоимость и высокую надежность. Но у них есть и один огромный минус – они потребляют реактивную составляющую мощности. Поэтому их максимальный уровень мощности сильно зависит от мощности самой системы энергоснабжения. Ко всему прочему, из значения пускового тока втрое выше рабочего. В условиях слабой мощности питающей системы энергоснабжения, это может вызвать серьезное падение напряжение и отключение других работающих устройств. АД с фазными роторами, благодаря наличию в схеме ротора пусковых реостатов, могут запускаться с куда меньшим пусковым током.

Сопротивления, находящиеся в схеме ротора, помогают снизить уровень тока не только во время запуска, но и при торможении, реверсе и даже снижении количества оборотов. По мере того, как АД с фазным ротором набирает скорость , для поддержания нужного ускорения, сопротивления исключаются из схемы. То есть когда разгон завершается и АД выходит на нужную частоту, все резисторы цепи шунтируются, двигатель начинает работать со своей исинной механической характеристикой.

Схема запуска асинхронного двигателя с фазным ротором

При включении напряжения питания реле времени КТ1 и КТ2 срабатывают, размыкая свои контакты. После нажатия тумблера запуска SB1 срабатывает контактор КМ3 и запускается двигатель с сопротивлениями, которые добавлены в схему – в этот момент времени на контакторах КМ1 и КМ2 питание отсутствует. В момент подключения контактора КМЗ, в цепи КМ1 реле КТ1 замыкает свой фронтовой контакт через определенный промежуток времени, заданный задержкой. По истечению которого электродвигатель разгоняется, ток ротора начинает снижаться происходит подлючение контактора КМ1 – осуществляется шунтирование первой пусковой ступени сопротивлений. Ток снова увеличивается, но по мере разгона его значение начинает снижаться. Одновременно с этим отключается реле КТ2, и с выставленной задержкой происходит замыкание контакта в цепи КМ2. Происходит шунтирование второй ступени сопротивлений. Двигатель начинает работать в штатном режиме.

Благодаря ограниченному пускового тока, асинхронный двигатель с фазовым ротором можно применять и в слабых сетях.

Асинхронный двигатель с фазным ротором достоинства и недостатки устройства

Если сравнивать его с обычным АД с короткозамкнутым ротором, имеется два основных преимущества:

На практике АД с фазным ротором идеально подходят для случаев, когда нет необходимости в использовании широкой и плавной регулировки скорости и требуется большая мощность двигателя. Для правильного подключения АД необходимо правильно определить начала и концы фазных обмоток.

Это типовой маломощный электродвигатель мощностью до 1500 Вт, который используется в установках, в которых имеется небольшая нагрузка на валу в момент старта, а также в тех случаях, когда питание ЭД может быть только от однофазной сети. Обычно эти двигатели, используют в стиральных и посудомоечных машинах, небольших вентиляторах и т.п.

У типового трехфазного асинхронного двигателя имеется шесть выводов статорной обмотки – три конца и начала. Выводы могут соединяться методом треугольника или звезды. Для этого на корпусе ЭД сделана коммутационная коробка, в которую выводятся начала фаз С1, С2, С3 и их концы С4, С5, С6.

Подборка книг и инструкций связанная с теорией и практикой работы электродвигателей (ЭД), а также советы и рекомендации по их ремонту

Выбор электродвигателей к производственным механизмам — Представлены характеристики различных типов ЭД для наиболее распространенных механизмов, а также методика и расчет их выбора для обеспечения заданной производительности, надежности и экономичности.

Вентильные электродвигатели малой мощности для промышленных роботов — основы теории, конструкция и схемы вентильных ЭД постоянного тока. Дан анализ путей повышения их энергетических показателей и расширения функциональных возможностей. Подробные схемы датчиков положения ротора и частоты вращения с описанием их работы

Как самому рассчитать и сделать электродвигатель — рассмотрены расчеты ЭД малой мощности постоянного и переменного тока. Даны схемы включения трехфазных электродвигателей в однофазную сеть

Аварийные режимы асинхронных электродвигателей и способы их защиты -Расказывется о работе АД при отключениях и несимметрии напряжения, питании от маломощных сетей, большой неравномерности нагрузки

Ремонт электродвигателей Советы по выявлению и устранению неисправностей, организации и проведения ремонтов и испытаний ЭД различных типов

Автоматическое измерение выходных параметров электродвигателей

Для оценки свойств любого электродвигателя (ЭД) осуществляют построению механической характеристики. Механическая характеристика электродвигателя описывает определенную зависимость между электромагнитным моментом и частотой скольжения, либо вращения. Скольжение – показывает, насколько частота вращения магнитного поля обгоняет частоту вращения ротора ЭД.

Имеется интересная особенность применения асинхронного двигателя с фазным ротором в роли асинхронного преобразователя частоты (АПЧ), т.к частота тока протекающего в роторе ЭД пропорциональна частоте статорного тока, а коэффициент пропорциональности – скольжение. С помощью подобных преобразователей из типовой частоты 50 Гц можно получить 100, 200 Гц.

Типовая схема подсоединения АПЧ выглядит, как на рисунке ниже:

Обмотка статора подсоединена к питающей сети с частотой f1. Частоту f2 получают с концов роторной обмотки ротора, куда она поступает через контактные кольца и щетки.

Читать еще:  Плуги, их назначение, устройство и рабочий процесс

Для такого преобразования частоты требуется приводной двигатель, механически связанный с ротором АПЧ. Таким ЭД может быть синхронный или асинхронный двигатель, если необходимо задать определенную частоту, а можно использовать двигатель постоянного тока, если нужно осуществлять плавную регулировку частоты.

Если ротор преобразователя вращать в режиме противовключения, т.е против направления вращения магнитного поля статора, то скольжение s>1, поэтому, частота получаемого тока будет выше частоты статора f2>f1. Если поменять направление вращения приводного двигателя (ПД), то скольжение s 1, а значит, в числителе формулы выше должен стоять знак плюс, иначе s

Однофазный асинхронный двигатель: принцип работы

Особенности устройства и работы

Двигатель имеет простое устройство. Статор укомплектован двумя обмотками: первая обмотка — основная, т.е. рабочая, вторая обмотка — пусковая, которая работает только во время запуска мотора.

Если сравнивать с другими двигателями, у однофазного асинхронного мотора нет момента впуска. Если присмотреться, ротор внешне напоминает клетку для грызунов. Ток одной фазы создает магнитное поле, которое состоит из двух полей. При включении двигателя ротор остается без движения.

Расчет результирующего момента при неподвижном роторе находится в основе магнитных полей, которые образуют два вращающих момента.

М — противоположные моменты;

n — частота вращения.

Асинхронный однофазный двигатель: принцип работы

При задействовании неподвижной части наступает вращающий момент. Поскольку он возникает только после запуска, мотор укомплектован отдельным пусковым устройством.

У однофазного асинхронного мотора есть немало отличий от, к примеру, трехфазных. Если говорить об основных, стоит отметить особенности статора. На пазах предусмотрена двухфазная обмотка: основная, т.е. рабочая, и пусковая.

Магнитные оси расположены друг к другу перпендикулярно. При работе основная фаза не вызывает вращение ротора, ось магнитного поля остается неподвижной.

Для расчета обмоток статора разработаны специальные программы.

Какие бывают типы однофазных двигателей

На сегодня существуют следующие типы однофазных асинхронных моторов: с конденсаторным и бифилярным механизмом. У каждого из механизмов свои особенности, достоинства и недостатки.

Бифилярная обмотка в постоянном режиме не используется, поскольку при таком использовании падает значение КПД. С увеличением оборотов, она обрывается. Обмотка пуска включается на пару секунд, расчет работы по 3 сек до 30 раз в час. Если будет превышен запуск, витки перегреются.

Фаза расщепленная, цепь вспомогательной обмотки начинает работать при запуске. Для того, чтобы был достигнут пусковой момент, необходимо создать круговое магнитное поле. Для наилучшего пускового момента используется конденсатор. Моторы с включенными конденсаторами в цепи называются конденсаторными и работают на основе вращения поля магнитов. У конденсаторного мотора предусмотрено две катушки, которые находятся под постоянным напряжением.

Основные принципы работы

В основе принципа работы находится короткозамкнутый ротор. Магнитное поле имеет вид двух кругов с противоположными последовательностями, они двигаются в разные стороны с одинаковой скоростью. Достаточно разогнать ротор в нужную сторону, чтобы он продолжил движение в ту же сторону.

Именно поэтому для запуска однофазного асинхронного двигателя используют кнопку пуска. С ее нажимом статор начинает работу. Токи заставляют вращаться магнитное поле, в воздушном зазоре появляется магнитная индукция. Всего спустя несколько секунд разгон ротора равняется номинальной скорости.

Если кнопку пуска отпустить, электродвигатель переходит с режима двух фаз на одну фазу. Однофазный режим поддерживается за счет переменного поля магнитов, которое из-за скольжения вращается быстрее ротора.

Схема центробежного выключателя

Для эффективной работы однофазного асинхронного двигателя принято встраивать центробежный выключатель, а также реле с замыкающими контактами. Выключатель прерывает пуск статорной обмотки при достижении номинальной скорости ротора. Тепловое реле отключает двухфазную обмотку при перегреве. Это оптимальная комплектация мотора, которая обеспечит безопасную и надежную работу оборудования на долгие годы.

Изменение направления роторного вращения происходит при перемене направления тока в любой из фаз обмотки при запуске. Для этого достаточно нажать пусковую кнопку и переустановить одну или две металлические пластины. Для образования фазового сдвига необходимо добавить в цепь конденсатор или дроссель, резистор.

При запуске двигателя работает две фазы, потом — только одна. Как видите, асинхронный однофазный двигатель принцип работы имеет достаточно простой и понятный. В отличие от других моторов, с ним просто и легко работать.

Устройство и принцип работы трехфазных асинхронных двигателей

Трехфазный асинхронный двигатель состоит из неподвижного статора и ротора. Три обмотки размещены в пазах на внутренней стороне сердечника статора асинхронного двигателя. Обмотка же ротора асинхронного двигателя не имеет электрического соединения с сетью и с обмоткой статора. Начало и концы фаз обмоток статора присоединяют к зажимам в коробке выводов по схеме звезда или треугольник.

Асинхронные двигатели в основном различаются устройством ротора, который бывает двух типов: фазный или короткозамкнутый. Обмотка короткозамкнутого ротора асинхронного двигателя выполняется на цилиндре из медных стержней и называется «беличьей клеткой». Торцевые концы стержней замыкают металлическими кольцами. Пакет ротора набирают из электротехнической стали. В двигателях меньшей мощности стержни заливают алюминием. Фазный ротор и статор имеют трехфазную обмотку. Фазы обмотки соединяют звездой или треугольником и ее свободные концы выводят на изолированные контактные кольца.

Получение вращающегося магнитного поля

Обмотка статора асинхронного двигателя в виде трех катушек уложена в пазы расположенные под углом в 120 градусов. Начало и конца катушек обозначаются соответственно буквами A, B, C и X,Y,Z. При подаче на катушки трехфазного напряжения в них установятся токи Ia, Ib, Ic и катушки создадут собственное переменное магнитное поле. Ток в любой катушке положительный, когда он направлен от начала к ее концу и отрицательный при обратном направлении. Векторы намагничивающей силы совпадают с осями катушек, а их величина определяется значениями токов, направление результирующего вектора совпадает с осью катушки. Вектор результирующей намагничивающей силы поворачивается на 120 градусов сохраняя величину совпадает с осью соответствующей катушки. Таким образом за период, результирующее магнитное поле статора совершает оборот с неизменной скоростью. Работа трехфазного асинхронного двигателя основана на взаимодействии вращающегося магнитного поля с токами наводимыми в проводниках ротора.

Принцип работы трехфазного асинхронного двигателя

Совокупность моментов созданных отдельными проводниками образует результирующий вращающий момент двигателя, возникает электромагнитная пара сил, которая стремится повернуть ротор в направлении движения электромагнитного поля статора. Ротор приходит во вращение приобретает определенную скорость, магнитное поле и ротор вращаются с разными скоростями или асинхронно. Применительно к асинхронным двигателям, скорость вращения ротора всегда меньше скорости вращения магнитного поля статора.

Пуск асинхронных двигателей

В асинхронных двигателях с большим моментом инерции необходимо увеличение вращающего момента с одновременным ограничением пусковых токов — для этих целей применяют двигатели с фазным ротором. Для увеличения начального пускового момента в схему ротора включают трехфазный реостат. В начале пуска он введен полностью, пусковой ток при этом уменьшается. При работе реостат полностью выведен. Для пуска асинхронных двигателей с короткозамкнутым ротором применяют три схемы: с реактивной катушкой, с автотрансформатором и с переключением со звезды на треугольник. Рубильник последовательно соединяет реактивную катушку и статор двигателя. Когда скорость ротора приблизится к номинальной, замыкается рубильник, он закорачивает катушка и статор переключаются на полное напряжение сети. При автотрансформаторном пуске по мере разгона двигателя, автотрансформатор переводится в рабочее положение, в котором на статор подается полное напряжение сети. Пуск асинхронного двигателя с предварительным включением обмотки статора звездой и последующим переключением ее на треугольник дает трехкратное уменьшение тока.

Читать еще:  Станок сверлильный Энкор Корвет-45 с тисками, Москва

Изменение частоты вращения ротора трехфазного асинхронного двигателя

Параллельные обмотки двух фаз образуют одну пару полюсов сдвинутые в пространстве на 120 градусов. Последовательное соединение обмоток образует две пары полюсов, что дает возможность уменьшить скорость вращения в два раза. Для регулирования скорости вращения ротора изменением частоты тока используют отдельный источник тока или преобразователь энергии с регулируемой частотой выполненный на тиристорах.

Способы торможения двигателей

При торможении противовключением меняются два провода соединяющих трехфазную сеть с обмотками статора, изменяя при этом направление движения магнитного поля машины. При этом наступает режим электромагнитного тормоза. Для динамического торможения обмотка статора отключается от трехфазной сети и включается в сеть постоянного тока. Неподвижное поле статора заставляет ротор быстро останавливаться. Асинхронные двигатели нашли широкое применение в промышленности. В строительных механизмах, на металлообрабатывающих станках, в кузнечно-прессовом оборудовании, в силовых приводах прокатных станов, в радиолокационных станциях и многих других отраслях.

Принцип действия асинхронного двигателя

Понять принцип действия асинхронного двигателя не сложно, если не пользоваться учебниками для вузов и школ. Зачастую академическая литература лишь препятствует пытливому уму разобраться в работе электромоторов и часто навсегда отбивает охоту заниматься изысканиями, связанными с электротехникой и электромеханикой. В последнее время у многих людей, не связанных напрямую с наладкой и проектированием машин, появился интерес к сборке самодельных станков, механизмов, летательных аппаратов и самодвижущихся машин. Поэтому в этой статье мы попытались доступно объяснить принцип действия асинхронного электродвигателя без сложных понятий и формул.

Работа любого асинхронного двигателя построена на принципе вращающегося магнитного поля. Как его можно создать? Например, можно взять постоянный магнит и начать вращать его вокруг своей оси – получится вращающееся магнитное поле. А если крутить магнит возле медного диска, то он станет вращаться вслед за магнитом, пытаясь его догнать. Со стороны наблюдателя кажется, что между магнитом и диском есть невидимая вязкая связь. Их движение не синхронно, диск крутится с некоторым отставанием.

Объяснить это явление можно тем, что магнит при вращении возбуждает в структуре диска индукционные токи или токи Фуко. Они всегда движутся по замкнутому кругу — нигде не начинаясь и нигде не заканчиваясь, и являются, по сути, токами короткого замыкания, которые разогревают металл и от которых обычно пытаются избавиться. Но в нашем случае они полезны, т.к. порождают во вращаемом диске магнитное поле, которое дальше взаимодействует с полем постоянного магнита.

В асинхронных электродвигателях всё происходит по тому же принципу, только чтобы получить вращающееся поле, используют не постоянный магнит, а обмотки статора, в которых создаётся поле вращения. Условия для вращения можно создать только в многофазных системах, где ток сдвинут по фазе на определённый градус. В быту используются двухфазные электродвигатели, где вторая фаза создаётся искусственно с помощью сдвигающего конденсатора, катушки или сопротивления. В промышленности применяют трёхфазные системы.

Первый трёхфазный асинхронный двигатель был сделан русским учёным Доливо-Добровольским. Схема его работы показана на рисунке. Статор состоял из трёх обмоток (полюсов), отдалённых друг от друга на 120°. Вверху показан график синусоидального тока всех трёх полюсов, наложенных на один рисунок. В момент, когда ток одной из фаз равен нулю (отмечено пунктиром), две другие имеют значения близкие к максимальным и отличаются по направлению тока. Так между двумя работающими обмотками создаются магнитное поле. В следующий момент ситуация меняется – один из работающих полюсов отключается, оставшийся в работе меняет полярность (т.к. в обмотке меняется направление тока), а полюс только что включившийся в работу, поддерживает сместившееся магнитное поле. Магнитные линии пересекают часть металлического ротора и в нём генерируются вихревые токи. Они взаимодействуют с вращающимся полем статора и увлекаются за ним, пытаясь его догнать, и ротор проворачивается.

Основной принцип работы асинхронного двигателя, созданного в позапрошлом веке, остаётся актуальным и для современных электродвигателей. Только вместо дисковых и цилиндровых роторов стали использовать короткозамкнутые роторы по типу «беличья клетка» и фазные роторы. Также изменилась форма обмоток статора – вместо катушек с полюсными наконечниками теперь делают радиальные обмотки, уложенные в пазы.

Асинхронные двигатели хороши тем, что они не имеют скользящих контактов (ток в роторе индуцируется бесконтактно), а направление вращения легко поменять, изменив направление тока в одной из обмоток (поменяв фазы на клеммах мотора). Выше была рассмотрена работа статора с одной парой рабочих полюсов (двухполюсного с тремя обмотками). Количество оборотов в минуту такого электромотора равно частоте тока, т.е. 50 об/сек или 3000 об/мин. Изготавливают также 4-х и 6-ти полюсные электродвигатели с шестью и девятью обмотками соответственно. Частота вращения таких моторов составляет 1500 и 1000 об/мин.

Подведём итоги. Принцип действия асинхронного двигателя основывается на создании в обмотках статора вращающегося магнитного поля, которое пересекает контур ротора и индуцирует в нём электродвижущую силу. Поскольку он замкнут на коротко, то в нём возникает переменный ток. Магнитное поле этого тока вместе с вращающимся магнитным полем статора создают крутящий момент. Ротор начинает крутиться и пытается сравнять свою скорость со скоростью убегающего поля статора. Но как только частота вращения ротора совпадёт с частотой вращения магнитного поля статора, в роторе затухнут все электромагнитные процессы и крутящий момент станет равным нулю. Ротор начинает отставать и магнитное поле статора снова начинает возбуждать контур ротора. Этот процесс будет повторяться всё снова и снова. Таким образом, частота вращения ротора стремится догнать частоту вращения магнитного поля статора, но всё время отстаёт, т.е. вращается не синхронно, а значит асинхронно.

В станкостроении асинхронные двигатели не заменимы. Ни какой другой тип электромоторов не имеет такой высокой износоустойчивости и универсальности. Поэтому такое оборудование как станок для сетки рабицы, правильно-отрезной и просечно-вытяжной станки, выпускаемые на нашем предприятии, оснащены именно асинхронными электроприводами. На видео хорошо объясняется принцип работы асинхронного электродвигателя, его устройство и отличительные особенности

Асинхронный электродвигатель. Устройство и принцип действия.

Асинхронный электродвигатель имеет две основные части – статор и ротор. Неподвижная часть двигателя называется статор. С внутренней стороны статора сделаны пазы, куда укладывается трехфазная обмотка, питаемая трехфазным током. Вращающаяся часть машины называется ротор, в пазах его тоже уложена обмотка. Статор и ротор собираются из отдельных штампованных листов электротехнической стали толщиной 0,35-0,5 мм. Отдельные листы стали изолируются один от другого слоем лака. Воздушный зазор между статором и ротором делается как можно меньше (0,3-0,35 мм в машинах малой мощности и 1-1,5 мм в машинах большой мощности).
В зависимости от конструкции ротора асинхронные двигатели бывают с короткозамкнутым и с фазным роторами. Наибольшее распространение получили двигатели с короткозамкнутым ротором, они просты по устройству и удобны в эксплуатации.
Трехфазная обмотка статора помещается в пазы и состоит из ряда катушек, соединенных между собой. Каждая катушка сделана из одного или нескольких витков, изолированных между собой и от стенок паза.

Рис. 1. Различные виды обмотки статора асинхронных электродвигателей

На рис. 1, а) показана обмотка статора асинхронного электродвигателя. У этой обмотки каждая катушка состоит из двух проводников. Обмотка, состоящая из трех катушек, создает магнитное поле с двумя полюсами. За один период трехфазного тока магнитное поле сделает один оборот. При частоте 50 Гц это будет соответствовать 50 об/сек, или 3000 об/мин.
На рис. 1, б) показана обмотка, у которой каждая сторона катушки состоит из двух проводников.
Скорость вращения магнитного поля четырехполюсного статора вдвое меньше скорости вращения поля двухполюсного статора, т. е. 1500 об/мин (при 50 Гц). Обмотка четырехполюсного статора с одним проводником на полюс и фазу показана на рис. 1, в), а с двумя проводниками на полюс и фазу – на рис. 1, г). Магнитное поле шестиполюсного статора имеет втрое меньшую скорость, чем двухполюсного, т. е. 1000 об/мин (при 50 Гц). Обмотка шестиполюсного статора с одним проводником на полюс и фазу представлена на рис. 1, д). Число всех пазов на статоре равно утроенному произведению числа полюсов статора на число пазов, приходящееся на полюс и фазу.

Читать еще:  Выбор токарного станка по дереву для использования дома

Асинхронный электродвигатель с короткозамкнутым ротором является самым распространенным из электрических двигателей, применяемых в промышленности. Рассмотрим его устройство. На неподвижной части двигателя – статоре 1 – размещается трехфазная обмотка 2 (рис. 2), питаемая трехфазным током. Начала трех фаз этой обмотки выводятся на общий щиток, укрепленный снаружи на корпусе электродвигателя.

Рис. 2. Асинхронный электродвигатель с короткозамкнутым ротором
Собранный сердечник статора укрепляют в чугунном корпусе 3 двигателя. Вращающуюся часть двигателя – ротор 4 – собирают также из отдельных листов стали. В пазы ротора закладывают медные стержни, которые с двух сторон припаивают к медным кольцам

Рис. 3. Короткозамкнутый ротор
а — ротор с короткозамкнутой обмоткой, б — «беличье колесо»,
в — короткозамкнутый ротор, залитый алюминием;
1 — сердечник ротора, 2 — замыкающие кольца, 3 — медные стержни,
4 — вентиляционные лопатки
Таким образом, все стержни оказываются замкнутыми с двух сторон накоротко. Если представить себе отдельно обмотку такого ротора, то она по внешнему виду будет напоминать «беличье колесо». В настоящее время у всех двигателей мощностью до 100 кВт «беличье колесо» делается из алюминия путем заливки его под давлением в пазы ротора. Вал 6 вращается в подшипниках, закрепленных в подшипниковых щитах 7 и 8. Щиты при помощи болтов крепятся к корпусу двигателя. На один конец вала ротора насаживается шкив для передачи вращения рабочим машинам или станкам.
Устройство статора асинхронного двигателя с фазным ротором и его обмотка не отличаются от устройства статора двигателя с короткозамкнутым ротором. Различие между этими электродвигателями заключается в устройстве ротора.

Рис. 4. Разрез асинхронного двигателя с фазным ротором
1 — вал двигателя, 2 — ротор, 3 — обмотка ротора, 4 — статор, 5 — обмотка статора, 6 — корпус, 7 — подшипниковые крышки, 8 — вентилятор, 9 — контактные кольца
Фазный ротор имеет три фазные обмотки, соединенные между собой звездой (реже треугольником). Концы фазных обмоток ротора присоединяют к трем медным кольцам, укрепленным на валу ротора и изолированным как между собой, так и от стального сердечника ротора, вследствие чего этот двигатель получил также название двигателя с контактными кольцами. Три кольца жестко насажены на вал ротора (через изоляционные прокладки). На кольца накладываются щетки, которые размещены в щеткодержателях, укрепленных на одной из подшипниковых крышек.
Щетки, скользящие по поверхности колец ротора, все время имеют с ними хороший электрический контакт и соединены, таким образом, с обмотками ротора. Щетки соединены с трехфазным реостатом.

Источник: Кузнецов М. И. Основы электротехники. Учебное пособие.
Изд. 10-е, перераб. «Высшая школа», 1970.

Устройство, принцип работы и подключения электродвигателей переменного тока

Подписка на рассылку

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

Электродвигатели переменного тока являются электротехническими устройствами, которые преобразовывают электрическую энергию в механическую. Электромоторы нашли широкое применение во многих отраслях промышленности для привода всевозможных станков и механизмов. Без такого оборудования невозможна работа стиральных машин, холодильников, соковыжималок, кухонных комбайнов, вентиляторов и других бытовых приборов.

По принципу работы электродвигатели переменного тока делятся на синхронные и асинхронные. Асинхронные электромоторы переменного тока наиболее часто применяются в промышленности.

Стоит рассмотреть устройство электродвигателя переменного тока асинхронного.

Данный вид электромоторов состоит из главных частей — статора и ротора. В современных асинхронных электромоторах статор имеет неявно выраженные полюсы.

Для того чтобы максимально снизить потери от вихревых токов, сердечник статора изготавливают из соответствующей толщины листов электротехнической стали, подвергшихся штамповке. В пазы статора впрессовывается обмотка из медного провода. Фазовые обмотки статора устройства могут соединяться «звездой» или «треугольником». При этом все начала и концы впрессованных обмоток электромотора выводятся на корпус — в клеммную коробку. Подобное устройство статора электродвигателя оправданно, так как дает возможность включать его обмотки на различные стандартные напряжения. Сердечник статора запрессовывается в чугунный или алюминиевый корпус.

Ротор асинхронного мотора также состоит из подвергшихся штамповке листов электротехнической стали, и во все его пазы закладывается обмотка.

Учитывая конструкцию ротора, асинхронные электродвигатели подразделяются на устройства с короткозамкнутым ротором и фазным ротором.

Обмотку короткозамкнутого ротора, сделанную из медных стержней, закладывают в пазы ротора. При этом все торцы стержней соединяют при помощи медного кольца. Данный вариант обмотки считается обмоткой типа «беличья клетка». Стоит отметить, что медные стержни в пазах ротора не изолируются. Во многих асинхронных электромоторах «беличью клетку» сменяют литым ротором. Ротор напрессовывается на вал двигателя и является с ним одним целым.

Синхронные электродвигатели устанавливаются в различных электроинструментах, пылесосах, стиральных машинах. На корпусе синхронного электромотора переменного тока имеется сердечник полюса, в котором расположены обмотки. Обмотки возбуждения намотаны и на якорь. Их выводы припаяны ко всем секторам токосъемного коллектора, на которые при использовании графитовых щеток подается напряжение.

Принцип действия электродвигателя переменного тока основан на применении закона электромагнитной индукции. При взаимодействии переменного электрического тока в проводнике и магните может возникнуть непрерывное вращение.

В синхронном электродвигателе якорь вращается синхронно с электромагнитным полем полюса, а у асинхронного электромотора ротор вращается с отставанием от вращающегося магнитного поля статора.

Для работы асинхронного электромотора необходимо, чтобы ротор устройства вращался в более медленном темпе, чем электромагнитное поле статора. При подаче тока на обмотку статора между сердечником статора и ротора возникает электромагнитное поле, которое наводит ЭДС в роторе. Возникает вращающийся момент, и вал электродвигателя начинает вращаться. Из-за трения подшипников или определенной нагрузки на вал, ротор асинхронного двигателя всегда вращается в более медленном темпе.

Принцип работы электродвигателя переменного тока асинхронного заключается в том, что магнитные полюса устройства постоянно вращаются в обмотках электромотора и направление тока в роторе постоянно меняется.

Скорость вращения ротора электромотора асинхронного зависит от общего количества полюсов. Для того чтобы понизить скорость вращения ротора в таком двигателе, требуется увеличить общее количество полюсов в статоре.

В синхронных электродвигателях вращающий момент в устройстве создается при взаимодействии между током в обмотке якоря и магнитным потоком в обмотке возбуждения. При изменении направления переменного тока одновременно меняется направление магнитного потока в корпусе и якоре. При таком варианте вращение якоря всегда будет в одну сторону. Примечательно, что плавная регулировка скорости вращения таких электромоторов регулируется величиной подаваемого напряжения, при помощи реостата или переменного сопротивления.

В зависимости от напряжения сети фазные обмотки статора асинхронного электромотора могут подсоединяться в «звезду» или «треугольник». Схема электродвигателя переменного тока при подключении его в сеть с напряжением 220 Вольт обмотки соединяются в треугольник, а при подключении в сеть 380 Вольт — схема обмоток имеет вид звезды.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector