Yoga-mgn.ru

Строительный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

коэффициент армирования железобетона μ. Коэффициент армирования железобетона

Процент армирования конструкций из железобетона

Арматурный каркас является необходимой частью в железобетонных конструкциях. Цель его использования — усиление и повышение прочности бетонных изделий. Арматурный каркас изготавливается из стальных прутьев или готовой металлической сетки. Необходимое количество усиления рассчитывается с учетом возможных нагрузок и воздействий на изделие. Расчетная арматура называется рабочей. При укреплении в конструктивных или технологических целях производится монтажное армирование. Чаще используются оба типа для обеспечения более равномерного распределения усилий между отдельными элементами арматурного каркаса. Арматура выдерживает нагрузку от усадки, колебаний температур и прочих воздействий.

Армирование бетона

Прочность на излом, повышенная надежность являются основными характеристиками, которым наделяется железобетонная конструкция при армировании. Стальной каркас многократно усиливает выносливость материала, расширяя область его применения. Горячекатаная сталь используется для армирования в железобетоне. Она наделена максимальной стойкостью к негативным воздействиям и коррозии.

Сваренный скелет из арматуры размещается внутри бетона. Однако недостаточно просто поместить его туда. Чтобы армирование выполняло свое назначение, требуются специальный расчет усиления бетона, соответствующий минимальному и максимальному проценту.

Минимальный армирующий процент

Под предельно минимальным армирующим процентом принято понимать степень преобразования бетона в железобетон. Недостаточная величина этого параметра не дает права считать изделие усиленным до ЖБИ. Это будет простым упрочнением конструкционного типа. Площади сечения бетонного изделия учитываются в минимальном проценте усиления при использовании продольного армирования в обязательном порядке:

  1. Усиление прутьями будет соответствовать 0,05 процентам от площади разреза изделия из бетона. Это актуально для объектов с внецентренно изгибаемыми и растянутыми нагрузками, когда оказывается продольное давление за пределами действительной высоты.
  2. Армирование прутьями равно не менее 0,06 процентам, когда давление во внецентренно растянутых изделиях осуществляется на пространство между армирующими прутьями.
  3. Упрочнение будет составлять 0,1—0,25 процента, если железобетонные материалы усиливаются во внецентренно сжатых частях, то есть между арматурами.

При расположении продольного усиления по периметру сечения, то есть равномерно, степень армирования должна равняться величинам, вдвое большим указанных для всех перечисленных выше случаев. Это правило аналогично и для усиления центрально-растянутых изделий.

Максимальный армирующий процент

При армировании нельзя укреплять бетонную конструкцию слишком большим количеством прутьев. Это приведет к существенному ухудшению технических показателей железобетонного материала. ГОСТ предлагает определенные нормативы максимального процента армирования.

Максимально допустимая величина усиления, вне зависимости от марки бетона и типа арматуры, не должна превышать пяти процентов. Речь идет о расположении в разрез сечения изделия с колоннами. Для других изделий допускается максимально четыре процента. При заливке арматурного каркаса, бетонный раствор должен проходить сквозь каждый отдельный конструкционный элемент.

Защитный слой бетона

Для защиты арматуры от коррозии, влаги и прочих неблагоприятных внешний воздействий, бетон должен полностью покрывать стальной каркас. Толщина бетонного пласта над металлическим скелетом в монолитных стенах более 10 см должна составлять максимально 1,5 см. Для плит толщиной до 10 см величина слоя составляет 1 см. Если речь идет о 25-сантиметровых ребрах, слой бетона должен достигать 2 см. При армировании балок до 25 см пласт цементного раствора равен 1,5 см, но для балок в фундаментах — 3 см. Для колонн стандартных размеров следует заливать бетон слоем более 2 см.

Что касается фундаментов, то для монолитных конструкций с прослойкой из цемента требуемая толщина слоя над арматурным каркасом составляет 3,5 см. При обустройстве сборных основ — 3 см. Монолитные базы без подушки требуют 7-сантиметровый слой бетона над скелетом из арматуры. При использовании толстых защитных слоев бетона рекомендуется проводить дополнительное усиление. Для этого используется стальная проволока, вязанная в виде сетки.

При дальнейшей обработке железобетонных конструкций алмазными кругами важно учитывать расположение каждого армирующего элемента и структуру его скелета. Это особенно касается процессов сверления отверстий в железобетоне и его резки. Такая обработка материалов может снизить потенциальную прочность изделия. Когда железобетон демонтируется полностью, учет перечисленных выше требований не производится.

Заключение

Индивидуальное строительство немыслимо без использования бетонных растворов. Для повышения надежности и прочности возводимых конструкций армирование является важным условием.

При наличии базовых знаний и опытных помощников усиление бетонных объектов не составит труда. В этом деле важно выполнять требования и следовать правилам расположения арматуры. Только так можно получить гарантированно долговечные и надежные железобетонные конструкции.

1.3.6. Усадка бетона при наличии арматуры

Наличие арматуры существенно уменьшает усадку и набухание бе­тона. Это объясняется тем, что арматура вследствие сцепления с бетоном становится внутренней связью, препятствующей свободной усадке бетона (рис. 29).

Опыты показали, что при μ = 2% деформации усадки железобе­тонных элементов уменьшаются в 1,5. 2 раза, при μ = 5% – более чем в 3 раза по сравнению со свободной усадкой бетона ().

Для определения деформации усадки железобетона при старом (зрелом) бетоне естественного твердения можно пользоваться формулой:

где μ – процент армирования сечения. Т.е. при μ = 1% , приμ = 2% – , а приμ = 10% – .

Стеснение (ограничение) арматурой деформаций усадки бетона приводит к возникновению в железобетонном элементе собственных или начальных внутренне уравновешенных напряжений: растяже­ния в бетоне и сжатия в арматуре.

Под влиянием разности деформаций свободной усадки бетонного элемента () и стесненной усадки армированного элемента () (см. рис. 29)

(1.27)

в поперечных сечениях железобетонного элемента возникают растя­гивающие напряжения в бетоне , средние значения которых опреде­ляются по формуле:

(1.28)

Рис. 29. Деформации усадки образцов:

а – бетонного; б – желе­зобетонного

Наибольшие значения этих напряжений находятся в зоне контак­та бетона с арматурой.

ак как при воздействии на железобетонный элемент усадки бе­тона арматура работает упруго, то по её деформациям укорочения () можно определить сжимающие напряжения в ней, вызванные усадкой

равнение равновесия внутренних усилий, возникающих в же­лезобетонном элементе, армированном двусторонней симметричной арматурой, имеет вид:

где As площадь сечения продольной арматуры;

А – площадь се­чения элемента.

Из (1.30) находим напряжения в продольной арматуре

(1.31)

где коэффициент армирования сечения.

Если подста­вить в (1.27) деформации, выраженные через напряжения, по фор­мулам (1.28), (1.29), (1.31), то получим следующее выражение:

Из него получаем значение средних растягивающих напряжений в бетоне, действующих в поперечном сечении железобетонного эле­мента

(1.32)

где отношение модулей упругости арматуры и бетона;

, здесь коэффициент упругопластических деформа­ций бетона при растяжении.

Из (1.32) видно, что при усадке железобетона растягивающие напряжения в бетоне зависят от величины деформации свободной усадки бетона (), процента армирования и класса бетона В, т.е. . С увеличением μ сжимающие напряжения в ар­матуре уменьшаются, а растягивающие напряжения в бетоне возрастают и, если они достигают временного сопротивления при рас­тяжении , то в железобетонном элементе возникают усадочные трещины. Если задаться деформацией усадки бетона (), величиной и принять ,то из выражения (1.32) можно найти коэф­фициент армирования, при котором появляются трещины. Обычно при этом принимают наибольшей и постоянной для всех классов бетона, равной 0,0003, , также независимо от класса бетона, при­нимается равным 0,5. Вычисленные при этих значениях коэффици­енты армирования получаются сравнительно высокими.

Начальные растягивающие напряжения в бетоне от усадки спо­собствуют более раннему образованию трещин в тех зонах железо­бетонных элементов, которые испытывают растяжение от нагрузки.

В статически неопределимых железобетонных конструкциях (ар­ках, рамах и т.п.) лишние связи препятствуют усадке железобетона, вызывая появление дополнительных внутренних усилий.

Влияние усадки эквивалентно понижению температуры на опре­деленное число градусов. Это позволяет заменять расчёт на дей­ствие усадки расчётом на температурные воздействия. Для практи­ческих расчетов при μ = 2. 3% среднюю величину усадки железо­бетона часто принимают равной = 1,5 • 10 -4 , что равносильно понижению температуры на 15°С (так как коэффициент линейной температурной деформации бетона ).

Читать еще:  Как и чем заделать дырку в линолеуме самостоятельно

ПРЕДИСЛОВИЕ

Пособие содержит рекомендации по проектированию и расчету самонапряженных железобетонных конструкций, выполняемых из напрягающего бетона на напрягающем цементе (НЦ).

Разработано к СНиП 2.03.01-84 в части конкретизации требований к проектированию самонапряженных конструкций, расчетных характеристик напрягающего бетона, особенностей расчета этих конструкций, включая самонапряжение в зависимости от количества и характера расположения арматуры в конструкции, а также от деформаций элементов в процессе самонапряжения.

Расчет самонапряженных конструкций на все виды эксплуатационных воздействий по предельным состояниям первой и второй групп производится, как правило, в соответствии с требованиями СНиП 2.03.01-84 как конструкций из тяжелого, в том числе мелкозернистого, и легкого бетонов и с учетом в необходимых случаях предварительного напряжения арматуры и бетона, а также их деформаций в результате самонапряжения, определяемых согласно положениям настоящего Пособия.

Расчет и проектирование предварительно напряженных железобетонных конструкций на основе напрягающего бетона рекомендуется производить в соответствии с «Пособием по проектированию предварительно напряженных железобетонных конструкций из тяжелых и легких бетонов» ЦНИИпромзданий и НИИЖБ Госстроя СССР с учетом расчетных характеристик напрягающего бетона, приведенных в настоящем Пособии.

В Пособии, как и в СНиП 2.03.01-84, приведены физические величины в единицах Международной системы единиц (СИ).

Пособие допускает использование прямого метода расчета, особенно при действии внешних сил и изгибающих моментов противоположных знаков, позволяющего сразу подбирать оптимальные (по расходу материалов, стоимости и другим показателям) сечения бетона и арматуры с обязательной проверкой их в соответствии с требованиями СНиП 2.03.01-84.

Разработано НИИЖБ Госстроя СССР (д-р техн. наук В.В. Михайлов, канд. техн. наук Л.И. Будагян ц ) и ЦНИИпромзданий Госстроя СССР (инж. И.К. Никити н ) с использованием работ д-ра техн. наук Г.И. Берд ичевского , кандидатов техн. наук С.Л. Литвер а и Л.А. Титовой, инженеров М.И. Бейлиной и А.Л. Чу шкина (НИИЖБ Госстроя СССР), д-ра техн. наук З.Н. Цилосани и канд. техн. наук Т.О. Силагадзе (Институт строительной механики и сейсмостойкости им. К.С. Завриева АН ГССР), кандидатов техн. наук В.Д. Будюка, О.С. Деха и А.А. Кондратчика (Брестский ИСИ Минвуза БССР), канд. техн. наук Е.Н. Щербакова (ЦНИИС Минтрансстроя), канд. техн. наук P . P. Юсупова (ТашЗНИИЭП Госгражданстроя).

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Настоящее Пособие распространяется на проектирование самонапряженных железобетонных конструкций, выполняемых из бетонов тяжелого, в том числе мелкозернистого, легкого марки по плотности не ниже D1400, естественного твердения или подвергнутого тепловой обработке при атмосферном давлении и предназначенных для работы при систематическом воздействии температур не выше 50 и не ниже минус 70 °С.

Самонапряженные железобетонные конструкции — конструкции, предварительное напряжение которых создается в процессе твердения напрягающего бетона за счет его расширения и натяжения в результате этого находящейся в конструкции арматуры или возникает при иных видах стеснения деформаций расширения указанного бетона при его твердении (например, в стыках элементов конструкций, отверстиях и т.п.).

Примечан и е. Проектирование самонапряженных железобетонных конструкций гидротехнических сооружений, мостов, транспортных тоннелей, труб под насыпями, покрытий автомобильных дорог и аэродромов, а также конструкций, выполняемых из особо тяжелого бетона и из бетона на специальных заполнителях, следует производить согласно требованиям соответствующих нормативных документов.

1.2. Самонапряженные железобетонные конструкции следует применять исходя из их технико-экономической эффективности в конкретных условиях строительства и с учетом следующих особенностей данных конструкций:

повышения трещиностойкости или уменьшения размеров сечений элементов за счет самонапряжения конструкций в результате расширения напрягающего бетона без применения дополнительных устройств, машин и механизмов (например, элементов, воспринимающих давление жидкостей или газов; конструкций, эксплуатируемых в грунте ниже уровня грунтовых вод; емкостных сооружений и стыков элементов этих сооружений; оболочек покрытий, безрулонных кровель и т.п.);

обеспечения повышенной водонепроницаемости конструкций при действии гидростатического давления без устройства гидроизоляции — за счет плотной структуры данного бетона;

увеличения расстояния между деформационными швами и сокращения их количества в протяженных сооружениях за счет самонапряжения и повышенной прочности данного бетона на осевое растяжение (например, в спортивных сооружениях).

Самонапряженные железобетонные конструкции целесообразно применять также в тех случаях, когда предварительное напряжение поперечной и косвенной арматуры выполнить другими способами трудоемко и технически сложно (например, в колоннах со спиральной арматурой в зданиях и сооружениях под большими нагрузками).

1.3. Самонапряженные железобетонные конструкции, указанные в п. 1.1, следует проектировать как железобетонные конструкции из тяжелого или легкого бетона в соответствии со СНиП 2.03.01-84 и с учетом рекомендаций настоящего Пособия.

1.4. Самонапряженные железобетонные конструкции, предназначенные для работы в условиях агрессивной среды, необходимо проектировать с учетом дополнительных требований, предъявляемых СНиП по защите строительных конструкций от к оррозии к конструкциям из тяжелого и легкого бетонов.

При воздействии на конструкции среды с содержанием сульфатов в пересчете на ионы S O 4 ″ до 5000 мг/л допускается не предусматривать специальную изоляцию.

При более высоком содержании сульфатов защитные слои конструкций следует выполнять с добавкой 1 — 2 % асбестового или базальтового волокна. В массивных сооружениях взамен этого целесообразно использовать плиты-оболочки, изготовленные с добавкой асбестового или базальтового волокна.

1. 5. При проектировании самонапряженных железобетонных конструкций следует учитывать требования соответствующих документов по технологии приготовления напрягающего бетона, а также особенности производства работ.

2. МАТЕРИАЛЫ ДЛЯ САМОНАПРЯЖЕННЫХ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ

2.1. Для самонапряженных железобетонных конструкций рекомендуется предусматривать напрягающий бетон на напрягающем цементе НЦ-20 и НЦ-40, отвечающий требованиям соответствующих стандартов и технических условий, утвержденных в установленном порядке.

Допускается применять напрягающий бетон на НЦ-10 при условии обеспечения предусмотренных проектом марок по самонапряжению и водонепроницаемости.

2.2. Для самонапряженных конструкций необходимо предусматривать следующие классы и марки напрягающего бетона:

а) классы по прочности на сжатие — B 20; B25; B 30; B35; B 40; B45; B 50; B55; B 60; B70;

б) классы по прочности на осевое растяжение — B t 1,6; B t 2; B t 2,4; B t 2,8; Bt3,2; B t 3,6; B t 4; B t 4,4; B t 4 ,8;

в) марки по морозостойкости — F100; F150; F200; F 300; F400; F 500;

г) марки по самонапряжению — Sp0,6; Sp0,8; Sp1; Sp1,2; Sp1,5; Sp2; Sp2,5; Sp3; Sp4;

д) марка по водонепрони цаемости напрягающего бетона обеспечивается не ниже W12 и в проектах может не указываться.

Примечани я: 1. Классы бетона по прочности на сжатие и осевое растяжение отвечают значению гарантированной прочности бетона в МПа, контролируемой на базовых образцах в установленные сроки, согласно государственным стандартам, с обеспеченностью 0,95.

2. Марка бетона по самонапряжению представляет значение предварительного напряжения в бетоне, МПа, создаваемого в результате его расширения при коэффициенте продольного армирования μ = 0,01, и контролируется на образцах-призмах размером 10×10×40 см, изготовленных и испытанных в кондукторах в соответствии с методикой, изложенной в обязательном приложении 1.

3. Проектные марки бетона по самонапряжению выше Sp2 могут предусматриваться только при использовании и подтверждении обеспеченности объекта цементом НЦ- 40.

4. Проектные марки бетона по самонапряжению Sp2 и S p 4 при использовании цементов соответственно НЦ-20 и НЦ-40 рекомендуется назначать для конструкций, эксплуатируемых после их возведения во влажных условиях или в воде.

5. При выборе проектной марки бетона по самонапряжению рекомендуется учитывать положения пп. 3.4 и 4.6 настоящего Пособия.

2.3. Класс бетона по прочности на сжатие для самонапряженных конструкций в зависимости от вида и класса арматуры следует принимать не ниже указанного в табл. 8 СНиП 2.03.01-84.

2.4. Нормативные R bn и расчетны е Rb и Rb , ser сопротивления напрягающего бетона осевому сжатию в зависимости от класса бетона по прочности на сжатие для предельных состояний соответственно первой и второй групп следует принимать как для тяжелого и мелкозернистого бетонов по табл. 12 и 13, а коэффициенты надежности и коэффициенты условий работы — соответственно по табл. 11 и 15, 16 СНиП 2.03.01-84.

Читать еще:  Балка двутавровая деревянная. Размеры двутавровых балок

2.5. Нормативные R btn и расчетные сопротивления напрягающего бетона осевому растяжению для предельных состояний первой R bt и второй R bt , ser групп, а также начальные модули упругости E b при сжатии и растяжении в зависимости от класса бетона по прочности на сжатие приведены в табл. 1 .

При контроле класса напрягающего бетона по прочности на осевое растяжение нормативные и расчетные сопротивления бетона осевому растяжению для предельных состояний второй группы R btn и Rbt , ser следует принимать равными его гарантированной прочности (классу) на осевое растяжение, а расчетные сопротивления бетона осевому растяжению для предельных состояний первой группы R bt в зависимости от класса бетона по прочности на осевое растяжение — по табл. 2.

Примечан и е. При расчете тонкостенных конструкций допускается учитывать рост прочности напрягающего бетона на осевое растяжение после 28 сут на 30 и 40 % соответственно к 90-м и 180-м суткам. При этом в проекте должна быть указана необходимая прочность к моменту загружения конструкции.

2.6. Расчетные сопротивления напрягающего бетона для предельных состояний первой группы, приведенные в табл. 1 и 2, в соответствующих случаях следует умножать на коэффициенты условий работы согласно табл. 15 — 17 СНиП 2.03.01-84.

Нормативные сопротивления бетона Rbtn, расчетные сопротивления бетона осевому растяжению для предельных состояний первой Rbt и второй Rbt,ser групп и начальные модули упругости Еb · 10 — 3 при сжатии и осевом растяжении для напрягающего бетона классов по прочности на сжатие

Как определить минимальный процент армирования конструкции?

Нормы дают нам ограничение в армировании любых конструкций в виде минимального процента армирования – даже если по расчету у нас вышла очень маленькая площадь арматуры, мы должны сравнить ее с минимальным процентом армирования и установить арматуру, площадь которой не меньше того самого минимального процента армирования.

Где мы берем процент армирования? В «Руководстве по конструированию железобетонных конструкций», например, есть таблица 16, в которой приведены данные для всех типов элементов.

Но вот есть у нас на руках цифра 0,05%, а как же найти искомое минимальное армирование?

Во-первых, нужно понимать, что ищем мы обычно не площадь всей арматуры, попадающей в сечение, а именно площадь продольной рабочей арматуры. Иногда эта площадь расположена у одной грани плиты (в таблице она обозначена как А – площадь у растянутой грани, и А’ – площадь у сжатой грани), а иногда это вся площадь элемента. Каждый случай нужно рассматривать отдельно.

На примерах, думаю, будет нагляднее.

Пример 1. Дана монолитная плита перекрытия толщиной 200 мм (рабочая высота сечения плиты h₀ до искомой арматуры 175 мм). Определить минимальное количество арматуры у нижней грани плиты.

1) Найдем площадь сечения бетона 1 погонного метра плиты:

1∙0,175 = 0,175 м² = 1750 см²

2) Найдем в таблице 16 руководства минимальный процент армирования для плиты (изгибаемого элемента):

3) Составим известную со школы пропорцию:

4) Из пропорции найдем искомую минимальную площадь арматуры:

Х = 0,05∙1750/100 = 0,88 см²

5) По сортаменту арматуры находим, что данная площадь соответствует 5 стержням диаметром 5 мм. То есть меньше этого мы устанавливать не имеем права.

Обратите внимание! Мы определяем площадь арматуры у одной грани плиты (а не площадь арматуры всего сечения плиты), именно она соответствует минимальному проценту армирования.

Пример 2. Дана плита перекрытия шириной 1,2 м, толщиной 220 мм (рабочая высота сечения плиты h₀ до искомой арматуры 200 мм), с круглыми пустотами диаметром 0,15м в количестве 5 шт. Определить минимальное количество арматуры в верхней зоне плиты.

Заглянув в примечание к таблице, мы увидим, что в случае с двутавровым сечением (а при расчете пустотных плит мы имеем дело с приведенным двутавровым сечением), мы должны определять площадь плиты так, как описано в п. 1:

1) Найдем ширину ребра приведенного двутаврового сечения плиты:

1,2 – 0,15∙5 = 0,45 м

2) Найдем площадь сечения плиты, требуемую условиями расчета:

0,45∙0,2 = 0,09 м² = 900 см²

3) Найдем в таблице 16 руководства минимальный процент армирования для плиты (изгибаемого элемента):

4) Составим пропорцию:

5) Из пропорции найдем искомую минимальную площадь арматуры:

Х = 0,05∙900/100 = 0,45 см²

6) По сортаменту арматуры находим, что данная площадь соответствует 7 стержням диаметром 3 мм. То есть меньше этого мы устанавливать не имеем права.

И снова обратите внимание! Мы определяем площадь арматуры у одной грани плиты (а не площадь арматуры всего сечения плиты), именно она соответствует минимальному проценту армирования.

Пример 3. Дан железобетонный фундамент под оборудование сечением 1500х1500 мм, армированная равномерно по всему периметру. Расчетная высота фундамента равна 4 м. Определить минимальный процент армирования.

1) Найдем площадь сечения фундамента:

1,5∙1,5 = 2,25 м² = 22500 см²

2) Найдем в таблице 16 руководства минимальный процент армирования для фундамента, предварительно определив l₀/h = 4/1.5 = 4,4 24:

3) Составим пропорцию:

4) Из пропорции найдем искомую минимальную площадь арматуры:

Х = 0,25∙1750/100 = 4,38 см²

5) По сортаменту арматуры находим, что данная площадь соответствует 5 стержням диаметром 12 мм, которые нужно установить у каждой грани на каждом погонном метре стены.

Заметьте, если бы стена была толще, минимальный процент армирования резко бы упал. Например, при толщине стены 210 мм потребовалось бы уже 5 стержней диаметром 10 мм, а не 12.

День добрый. Подскажите пожалуйста:

в примере 3 — l₀/h = 4/0.9 = 4,4, 0.9 — откуда это значение

в примере 4 — l₀/h = 10/0.5 = 20, 10 — откуда это значение

в примере 5 — l₀/h = 5/0.9 = 5,5, 0,9 — откуда это значение

Определение эффективных параметров армирования железобетонных конструкций

Леонид Скорук
К.т.н., доцент, старший научный сотрудник НП ООО «СКАД Софт» (г. Киев).

В настоящее время монолитный железобетон (обеспечивающий произвольную форму изделий, свободу планировочных решений и многое другое) получил большее распространение и применение по сравнению со сборным железобетоном (ограниченная номенклатура сборных изделий и пролет). В то же время сборные изделия прошли проверку временем по надежности и долговечности, а их армирование является оптимальным с точки зрения некоего условного соотношения «материал/стоимость конструкции». В монолитных же конструкциях величина арматуры в большинстве случаев является переменной и зависит от многих исходных факторов: геологии, типа фундамента, нагрузки, геометрии здания и т.д.

Это нужно понимать при проектировании монолитных конструкций и не идти на поводу у заказчиков, далеких от инженерного дела и желающих в первую очередь оптимизировать свои расходы на строительство.

Как известно, чтобы обеспечить необходимую прочность и устойчивость здания или сооружения, следует провести соответствующие расчеты и подобрать необходимое количество арматуры для восприятия действующих нагрузок. При этом в конструкциях должны быть соблюдены требования как по 1­й (прочность, устойчивость), так и по 2­й группе (прогибы, ширина раскрытия трещин) предельных состояний.

В практике проектирования сформировался определенный условный параметр, по которому можно оценить затраты металла в конструкции: содержание арматуры в бетоне (как правило, берут вес всей арматуры в конструкции — продольной и поперечной — и делят на объем ее бетона, получая параметр в килограммах на кубический метр (кг/м3)).

При этом в действующих строительных нормах [1­3] такой параметр напрочь отсутствует и никоим образом не регламентируется. В нормативах указывается только необходимость обеспечить в сечении элемента минимальный процент арматуры от площади бетона (min 0,05­0,25%) и опосредованно рекомендован оптимальный процент армирования в конструкциях на уровне примерно 3% (это опять же отклик оптимизации для сборных конструкций).

До какой­то степени величина содержания арматуры в конструкциях отражена в некоторых сметных нормативах [4, 5]. Там величина арматуры в бетоне находится в пределах 190­200 кг/м3 — опять же без привязки к различным изменчивым исходным данным.

Читать еще:  Почему класть плитку на плитку можно но не нужно

Для оценки величины содержания арматуры в бетоне монолитных конструкций проведем небольшой численный эксперимент. Возьмем для примера фрагмент плиты размерами в плане 1,0×1,0 м с двумя арматурными сетками у каждой грани, имеющими шаг стержней 100×100 мм, и проследим изменение содержания арматуры в бетоне в зависимости от изменения некоторых исходных параметров: толщины плиты и диаметра арматуры (рис. 1).

Рис. 1. Содержание арматуры в бетоне (кг/м3) для монолитного фрагмента площадью 1 м 2 при различных исходных данных: а — при разных диаметрах арматуры; б — при разных толщинах плит

Рис. 2. Интерфейс программы SCAD++. Постпроцессор «Железобетон», режим «Экспертиза железобетона»

Как видно из приведенных данных, даже при «идеальных» условиях проектирования (отсутствие поперечной арматуры, дополнительного армирования, различных элементов локального усиления и т.п.) величина содержания арматуры, например, для элемента толщиной 200 мм с размещенной в нем арматурой из двух сеток диаметром 10 мм составляет 123,2 кг/м 3 . При наличии же различных дополнительных факторов суммарное содержание арматуры в бетоне будет резко расти.

Таблица 1. Факторы, которые влияют на расход бетона и арматуры

Фактор

Следствие

Инженерно­геологические условия строительной площадки

Тип фундамента (свайный, плитный, ленточный)

Шаг сетки несущих вертикальных элементов

Пролет плит, их толщина (жесткость)

Размеры сечения колонн/пилонов/стен

Удельный вес арматуры в бетоне

Класс бетона и арматуры

Расход арматуры в сечении

Довольно трудоемкую и рутинную работу по определению содержания арматуры в бетоне для некоторых отдельных элементов и всего сооружения в целом на начальном этапе проектирования (еще до начала разработки чертежей стадии КЖ/КЖИ) с довольно высокой точностью можно выполнить в программе SCAD++. В режиме «Экспертиза железобетона» постпроцессора «Железобетон», используя операцию Вес заданной арматуры (рис. 2), можно в реальном времени не только определить расход арматуры, но заодно (что очень важно) и проверить, насколько заданная арматура удовлетворяет необходимым критериям прочности конструкции согласно выбранным нормам проектирования.

При этом нужно помнить, что программа считает расход:

  • арматуры без учета ее нахлеста и загибов, которые могут добавлять в реальный расход арматуры около 15­20%;
  • бетона с учетом пересечения элементов, поскольку стыковка элементов происходит по оси стержневых и срединной плоскости плитных элементов (увеличение около 5­10%).

Суммарный расход арматуры и бетона в любом здании зависит от многих факторов, которые можно в некоторой степени скорректировать на начальной стадии расчета и проектирования. Основные факторы, которые влияют на расход бетона и арматуры в конструкциях и зданиях, приведены в табл. 1.

Таблица 2. Содержание арматуры в бетоне для разных типов зданий

Тип здания

Элемент здания

Расход, кг/м3

а) 22­этажное здание на сваях
(шаг колонн/пилонов 6,0 м)

Коэффициент армирования железобетона μ. Коэффициент армирования железобетона

КАЧЕСТВЕННО

БЫСТРО

SEO оптимизация

адаптивная верстка

Ремонт в регионах

  1. Главная
  2. Строительство
  3. Сварные каркасы для колонн
  4. Армирование железобетонных конструкций

Под действием внешней нагрузки в конструкции могут возникать напряжения трех родов: растягивающие, сжимающие и сдвигающие. Металл одинаково хорошо сопротивляется растяжению и сжатию и лишь немного хуже сдвигу, тогда как бетон оказывает наибольшее сопротивление сжатию и сравнительно слабо сопротивляется растяжению и сдвигу.

Принципы армирования

  1. рациональное армирования железобетонных конструкций
  2. экономное расходование стали
  3. монолитность как всей конструкции в целом

Исходя из этих соображений, устанавливается первый принцип рационального армирования железобетонных конструкций: основные сжимающие усилия передаются на бетон, а растягивающие и сдвигающие — на арматуру. Из всех материалов, составляющих железобетон, сталь является наиболее дорогим. Поэтому из различных возможных решений конструкции выбирают то, которое при технической целесообразности и соответствии с назначением отвечает наименьшей затрате металла.

Коэффициент армирования

Экономное расходование стали представляет второй принцип рационального армирования. Насыщение конструкции металлом характеризуют расходом стали на 1 м3 железобетона; для отдельных поперечных сечений конструктивных элементов характеристикой является коэффициентом армирования μ = f ж/F,

представляющий отношение поперечного сечения основной арматуры к полному сечению элемента (или полезной его части).

Для конструкции в целом коэффициент армирования определяется частным от деления полного количества кг металла в 1 м3 бетона на 78,5 (при удельном весе стали 7,85).

Третьим принципом армирования является возможно лучшее осуществление монолитности как всей конструкции в целом, так и отдельных ее элементов. Все части конструкции должны быть связаны арматурой, образующей металлический скелет конструкции и работающей в соответствии с принципом рационального распределения внутренних усилий между металлом и бетоном. В сборных конструкциях должна быть учтена как работа отдельных элементов до их монтажа, так и неразрезанность конструкции после стыкования элементов.

Правила армирования

Если какому-либо усилию отвечает по расчету необходимая площадь арматуры f ж, она может быть осуществлена в конструкции различными способами — с большим количеством тонких стержней или малым количеством толстых.

Первое вообще полезнее, однако от этого положения нередко приходится отступать, чтобы обеспечить достаточную жесткость всему металлическому скелету конструкции во время ее бетонирования.

При густом расположении арматуры, например в балках, расстояние между стержнями не должно быть меньше 2,5 см (рис. 8). Монолитная связь стержней с бетоном требует довольно глубокой заделки последнего в бетон. Если стержень диаметром d испытывает нормальное напряжение σ, а напряжение сцепления равно τ , то необходимая глубина заделки :

l = σ • π d 2 / 4 : π d τ = σ / τ • d/4

эта величина довольно значительная при обычных напряжениях σ и τ. Для уменьшения ее применяют закрепление арматуры в бетоне путем устройства на концах стержней крюков. Крюки (рис. 9) делают прямыми, косыми и полукруглыми (крюк Консидера); последние наиболее эффективны. Закрепление растянутых стержней крюками следует производить в сжатой зоне конструкции; если же стержень оставляется в растянутой зоне, то длина заделки берется не менее 15 d, считая от того сечения стержня, где он уже не нужен по расчету. Сжатые стержни можно оставлять без крюков, но с заделкой не менее 20 d.

Арматуру часто приходится изгибать в соответствии с направлением воспринимаемых ею усилий; такие изгибы должны делаться плавно по дуге радиусом не менее 10 d ( рис. 10), чтобы избежать значительных местных напряжений в бетоне.

Особое внимание нужно обращать на правильное армирование в конструкциях входящих и исходящих углов. Входящий угол, по сторонам которого действуют растягивающие усилия следует армировать отдельными стержнями, запускаемыми вглубь бетона за вершину угла ( рис.11) стержень, огибающий вершину угла, отрывал бы защитный слой бетона. Аналогично сжатые стержни в исходящем угле следует связывать хомутами с растянутой арматурой, чтобы не вызвать отскакивания защитного слоя.

При армировании конструкций неизбежно приходится встречаться с необходимостью соединять стержни арматуры, образуя стыки. Так как всякое нарушение цельности в металлическом скелете конструкции нежелательно, то на качество стыкования арматуры и правильное расположение стыков следует обращать серьезное внимание. Наиболее благоприятным местом для стыков является сжатая область конструкции; в растянутой зоне стыки необходимо располагать лишь в местах с небольшим напряжением арматуры.

Способы стыкования

Существуют различные способы стыкования.

  1. Стыки внахлестку. Соединяемые стержни эаводятся один ва другой на длину (30—40) d в случае растяжения и не менее 20 d в случав сжатия (рис, 12); место стыка обматывается вязальной проволокой. Стыки внахлестку применяются при d 20 мм; стык удобный, но дорогой.
  2. Сварка — наиболее совершенный способ стыкования арматуры, состоит в применений электросварки (рис. 14): здесь сильно уменьшается расход металла; при хорошем качестве сварки можно значительно расширить область допустимых мест стыкования арматуры
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector