Yoga-mgn.ru

Строительный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Термическая обработка алюминиевых сплавов. Отжиг, закалка, старение.

Термическая обработка алюминиевых сплавов. Отжиг, закалка, старение.

  • Термомеханическая обработка алюминиевых сплавов
  • Технология термической обработки поковок и штамповок
  • Технология термической обработки алюминиевых труб
  • Технология термической обработки листов термически упрочняемых алюминиевых сплавов
  • Технология отжига листов термически не упрочняемых алюминиевых сплавов
  • Общая схема производства плит и листов из алюминиевых сплавов
  • Технология гомогенизационного отжига и отжига слитков для снятия напряжений
  • Принципы выбора режимов термической обработки алюминиевых сплавов
  • Термическая обработка в вакууме
  • Защитные покрытия

Диоксид титана пигментный tiox 220 является нетоксичным веществом, представленным в виде безопасного белого порошка.

Натуральный камень — это природное творение, свойства которого до конца не изучены. В природе нет ни одного одинакового экземпляра камня.

Транспортировка и утилизация отходов – очень важный вопрос. Здоровье людей и безопасность экологии во многом зависит от качества проведенных работ. Наиболее остро.

В наши дни очень удобно владеть земельным участком. Ведь на нем можно расположить свой бизнес или построить жилье.

Взрывоопасными считаются промышленные объекты, работа которых связана с взрывоопасными веществами (их транспортировкой, хранением, переработкой, добычей). Взрывоопасные.

В строительстве и машиностроении широкое применение нашла листовая сталь. В автомобилестроении доля холоднокатаных стальных листов составляет более пятидесяти процентов.

В этой статье речь пойдет о болтах класса прочности 8.8. Что означает маркировка на торце метизов? Из каких марок стали изготавливают высокопрочный крепеж? Какие.

Электроэнергия сегодня имеет ключевое значение в работе любого предприятия. Причем, чем крупнее предприятие, тем сложнее схема распределения электроэнергии.

Для создания теплых полов идеально подходят современные нагревательные маты. Основой могут быть кабельные системы с 1-2 жилами. Выбирая такую систему, можно существенно.

Всегда мечтали о ремонте с итальянской плиткой, но никак не могли её выбрать? Да, подобная проблема часто возникает среди Россиян, собиравшихся начинать ремонт.

Генератор льда когда-то был роскошью, а кто-то вообще не знал о его существовании, но эти времена ушли в прошлое и сейчас для многих он стал обыденной вещью, как.

Одной из самых распространенных операций в любой механической мастерской является сверление каких-либо отверстий. Так как все работы выполняются с помощью машин, то и.

Область применения металлопроката обширна, начиная от тонкого гвоздика и заканчивая космическими кораблями и океанскими лайнерами — арматура, швеллер, лист, сетка, трубы.

Обозначение режимов термообработки импортных сплавов алюминия.

Классификация по способам упрочнения

Алюминиевые сплавы разделяют на две основные группы по применимым режимам термообработки.

Сплавы, не способные к упрочнению при термообработке. Увеличение прочности таких сплавов достигают путем холодной деформации (прокатка, экструдирование и т.д.) и назывыется нагартовкой или деформационное упрочнением, а упрочненный сплав называют нагартованным. В англоязычной терминологии может применятся название — work hardening alloys. Механически нагартованные полуфабрикаты обозначают буквой Н.

Сплавы, упрочняемые термообработкой. Ряд сплавов увеличивают прочность / механические свойства после закалки с последующим охлаждением и естественным или искусственным старением. Такая термообработка обозначается буквой Т.

Термоупрочняющиеся сплавы

Термическая обработка твердого раствора (сплава) — процесс нагрева алюминия до заданной температуры в течение заданного времени, а затем быстрое охлаждение, обычно путем закалки в воду. Вода для закалки может подогреваться для уменьшения поводок и деформации полуфабрикатов.

Естественное старение (T1, T2, T3, T4) — процесс, который происходит самопроизвольно при нормальной (25С) температуре, пока металл не достигнет стабильного состояния. Это упрочняет алюминиевый сплав после термической обработки.

Искусственное старение (T5, T6, T9) — процесс нагрева в течение заданного периода (2-30 часов) при определенной температуре (100-200ºC) до тех пор, пока металл не достигнет стабильного состояния. Это увеличивает прочность после термической обработки сплава быстрее, чем естественное старение и в большей степени.

Сплавы, не упрочняющиеся термообработкой

Деформационное упрочнение (нагартовка) H14 — Общий термин для процессов, которые увеличивают прочность алюминия и снижают пластичность (например, прокатка, волочение, прессование, штамповка).

Частичный отжиг (H24) — процесс нагрева, который снижает прочность и увеличивает пластичность алюминия после деформационного упрочнения. Иногда называется отпуском.

Стабилизация (H34) — низкотемпературная термическая обработка или нагрев при производстве, которое стабилизирует механические свойства. Этот процесс обычно улучшает пластичность и применяется только к тем сплавам, которые без стабилизации постепенно стареют при комнатной температуре (то есть, не подвергаются термической обработке). Целью стабилизации является снятие остаточного внутреннего напряжения в металле. В основном используется для сплавов серии 5000 или АМг.

  • О – полный отжиг. Применяется для обозначения деформированных полуфабрикатов, подвергаемых отжигу для получения наиболее низких значений прочности, и литых деталей для повышения пластичности и размерной стабильности. После символа О может следовать другая цифра.
  • F – как произведено, без термической обработки. без какой-либо дополнительной обработки после изготовления. Применяется для обозначения полуфабрикатов, при операциях формообразования которых отсутствует специальный контроль режимов термообработки или нагартовки. Для деформированных полуфабрикатов не указываются пределы механических свойств.
  • W – закаленное состояние, нестабильное. Применимо только для сплавов, самопроизвольно стареющих при комнатной температуре после закалки (естественно стареющие сплавы), при этом специально указывается длительность естественного старения

Деформационно упрочненные

H – обозначает механическое (деформационное) упрочнение; первая цифра обозначает вид термообработки, вторая – степень твердости и прочности:

  • Н1 – деформационное упрочнение без термообработки
  • Н2 – деформационное упрочнение и частичный отжиг
  • Н3 – деформационное упрочнение с стабилизационный отжиг при низкой температуру
  • Н4 – деформационное упрочнение с последущим покрытием или покраской, при которых возможен частичный отжиг
    • вторая цифра( х – первая):
    • Н х 2 – ¼ твердости
    • Н х 4 – ½ твердости
    • Н х 6 – ¾ твердости
    • Н х 8 – полная твердость
    • Н х 9 – повышенная твердость

Обозначение нагартованного плоского проката

  • Н111 – деформационное упрочнение при прокатке, но меньшее, чем при H11
  • Н112 – частичный отжиг после деформационного упрочнения, степень деформационного упрочнения и термообработки не контролируется; гарантируется предел прочности
  • Н321 – деформационное упрочнение меньшее, чем при H321
  • Н323 – вариант H32, деформационное упрочнение с последущим отжигом для увеличения стойкости к коррозионному растрескиванию под напряжением
  • H34 –cтабилизированный, полутвердый — низкотемпературная термическая обработка или тепло, вводимое в процессе производства, которое стабилизирует механические свойства и снимает остаточное внутреннее напряжение, обычно улучшает пластичность. Применяется только для сплавов, которые, если не стабилизированы, постепенно размягчаются при комнатной температуре.
  • H343 – вариант H34, для увеличения стойкости к коррозионному растрескиванию под напряжением
  • Н115 – броневые плиты
  • Н116 – специальный отжиг для повышения стойкости к коррозии

Термически упрочненные

Т — термическая обработка для получения более стабильных состояний, чем F, O или W. Применяется для полуфабрикатов, подвергаемых термической обработке с дополнительной нагартовкой или без нее. Вслед за символом Т всегда следуют одна или несколько цифр. Естественное старение при комнатной температуре может происходить между или после операций, указанных для состояния Т. Контроль длительности естественного старения производят в случаях, когда это важно с металлургической точки зрения. Цифрами от 1 до 10 обозначают последовательность операций.

Закалка или обработка на твердый раствор состоит в нагреве литых или деформированных полуфабрикатов до соответствующей температуры, выдержке при этой температуре, продолжительность которой достаточна для перехода составляющих в твердый раствор, и быстром охлаждении для фиксации твердого раствора. У некоторых сплавов серии 6000 необходимые механические свойства достигаются либо при охлаждении с печью от температуры нагрева под закалку, либо при охлаждении от температур горячей деформации со скоростью, достаточной для того, чтобы избежать распада твердого раствора, что аналогично операции закалки. В таких случаях для дифференциации соответствующих состояний используют обозначения Т3, Т4, Т6, Т7, Т8 и Т9 .

Для обозначения деформированных полуфабрикатов, в которых остаточные термические напряжения уменьшают посредством холодной деформации, используют цифры, начиная со второй :Т3 511 , Т4 2

  • Т1 – охлаждение от температур горячей деформации (или формообразования) с последующим естественным старением для получения более стабильного состояния. Применимо для полуфабрикатов, не подвергаемых холодной деформации после охлаждения от температур деформации или в которых влияние холодной деформации при прогладке или растяжке не учитывают при установлении гарантируемых механических свойств.
  • Т2 – охлаждение от температур горячей деформации (или формооб¬разования), нагартовка и последующее естественное старение для получения более стабильного состояния. Применимо для полуфабрикатов, подвергаемых холодной деформации для повышения прочности после охлаждения от температур горячей деформации или в которых влияние холодной деформации при прогладке или растяжке оговаривается при установлении гарантируемых механических свойств.
  • Т3 – закалка, холодная деформация и последующее естественное старение. После закалки полуфабрикаты подвергают холодной деформации для повышения прочности, при этом влияние холодной деформации при прогладке или растяжке оговаривается в технической документации.
    • Т351 – закалка на твердый раствор без полиморфного превращения, уменьшение остаточных напряжений после закалки путем деформации растяжением в среднем на 2%, но не менее чем 1,5% и не более чем 3%, и естественное старение. Не производится дополнительное выравнивание после растяжки. Применяется для листов, катаных и холодно деформированных полос и прутков из алюминиевых сплавов, не подвергаемых дополнительной правке после растяжки
    • Т3511 – уменьшение остаточных напряжений после закалки или охлаждения от температур горячей деформации посредством растяжки со степенью деформации 1-1,5%, но не менее чем 1,5% и не более чем 3% и естественное старение. Отличие от Т351 — незначительная правка после растяжки для обеспечения стандартных требований по допускам. Режим Т3511 применяют для плит из алюминиевых сплавов, т. к. поводки после закалки характерны для массивных полуфабрикатов.
    • Т352 – уменьшение остаточных напряжений сжатием. Применяется для полуфабрикатов, в которых уменьшение остаточных напряжений после закалки или охлаждения от температур горячей деформации производится посредством правки сжатием с остаточной деформацией в пределах 1 — 5%. Естественное старение.
    • Т36 – закалка на твердый раствор или охлаждение от температур горячей деформации, холодная деформация около 6%, стественное старение.
    • Т361 – закалка на твердый раствор или охлаждение от температур горячей деформации, холодная деформация по толщине листа или плиты около 6%, стественное старение.

НАУКА: Современные технологии обработки алюминия и его сплавов

«Крылатый металл», как называют алюминий за его незаменимость в строительстве летательных аппаратов, сегодня является одним из самых востребованных конструктивных материалов в мире. Это связано в первую очередь с его внушающими природными запасами, а также совокупностью химических, физических и механических характеристик.

Алюминий — один из самых распространенных металлов по содержанию в земной коре. Неоспоримыми преимуществами алюминия и его сплавов считают их малую плотность, сравнительно высокие прочностные характеристики, хорошую теплопроводность и электропроводность, высокую коррозионную стойкость, технологичность. Совокупность всех перечисленных выше свойств позволяет отнести алюминиевые сплавы к числу важнейших технических материалов.

Широкий спектр применения алюминиевых сплавов обуславливает необходимость в развитии и совершенствовании способов его обработки. Одним из немаловажных видов обработки алюминиевых сплавов является их термическая обработка, которая обеспечивает необходимые эксплуатационные характеристики и качество изделий в целом.

К основным видам термической обработки алюминиевых сплавов относят: отжиг (гомогенизирующий отжиг, рекристаллизационный отжиг, возврат, полный отжиг), закалка и старение (естественное или искусственное).

Осуществление некомпетентной термической обработки приводит к появлению дефекта. Чаще всего дефекты образуются на закалочных операциях. Наиболее типичными ошибками, возникающими при термической обработке, являются: пережог, неполная и неравномерная закалка, коробление, образование трещин при закалке.

Пережог наблюдается при превышении заданной температуры термической обработки и нарушения состава печной атмосферы. Лучше всего данный дефект выявлять при исследовании микроструктуры материала.

Неполная или неравномерная закалка является следствием неравномерного нагрева, плохой температурной однородности, как в печном пространстве, так и в закалочном агрегате, недостаточного времени выдержки, длительного времени переноса закаливаемых изделий в закалочную среду, плохой температурной однородности закалочной среды. При таких условиях возможно также появление коробления.

С целью не допустить образования выше перечисленных дефектов, необходимо обеспечить максимальную однородность температуры на поверхности изделия при нагреве и выдержке, а также равномерное охлаждение. Этого можно достичь при помощи мощной циркуляции печной атмосферы и перемешивании закалочной среды. Следует обеспечить точную и надежную систему контроля технологического режима. Стабильность результатов термической обработки будет зависеть от автоматизации технологического процесса.

Современные комплексы для термической обработки алюминиевых сплавов (рис. 1) производства компании Nabertherm, за счет применения комплекса инженерно-технических решений, позволяют минимизировать влияние вредных факторов при проведении термической обработки для обеспечения наилучшего результата.

Рис. 1 Комплекс для термической обработки алюминиевых сплавов.

Главным преимуществом представленных агрегатов является полная автоматизация технологического процесса термической обработки алюминиевых сплавов. Это позволяет получать стабильный результат и исключает влияние человеческого фактора на получение конечного результата.

Комплекс также обладает и другими положительными характеристиками, такими как:

1. Соответствие современным техническим требованиям в области термической обработки алюминиевых сплавов. ПЛК — обеспечивающий полный контроль и документирование всех ключевых технологических параметров протекающего процесса. Полностью автоматизированная система управляет всеми процессами термической обработки, включая перемещение и фиксирование изделий.

2. Высокая степень однородности температуры внутри рабочего пространства (до ±3°С) печи за счет мощной циркуляции воздуха и специальной конструкции теплового агрегата обеспечивает равномерный прогрев изделий по всему объему садки. Это позволяет производить термическую обработку в максимально узком температурном диапазоне, обеспечивая наилучший состав пересыщенного раствора.

3. Усовершенствование закалочного бака. В закалочном баке (рис. 2) предусмотрены устройства нагрева, охлаждения, циркуляции и контроля температуры закалочной среды, что обеспечивает равномерное охлаждение изделий и четкое регулирование технологических параметров. В результате чего упрочняющие фазы твердого раствора распределены более равномерно, что значительно уменьшает вероятность возникновения дефектов.

Рис. 2 Циркуляция охлаждающей среды в закалочном устройстве.

4. Контроль влажности атмосферы. Атмосфера внутри рабочего пространства камер нагрева при эксплуатации дополнительно контролируется на наличие повышения влажности, выше критических параметров, что уменьшает возможность появления водородного охрупчивания.

Наличие таких существенных преимуществ позволяет качественно производить термические операции по обработке сплавов из алюминия и обеспечить требуемые свойства и характеристики выпускаемой продукции.

Специалисты компании ФИНВАЛ при тесном сотрудничестве с компанией Nabertherm помогут выбрать необходимое качественное оборудование, обеспечивающее все необходимые технические требования, а так же подберут дополнительное и вспомогательное оборудование.

Алексей Рыжов, Бренд-менеджер по термическому оборудованию, ГК Финвал

Термическая обработка алюминиевых и магниевых сплавов.

Термическая обработка алюминиевых и магниевых сплавов является ответственной операцией технологического процесса. Цель ее — изменить структуру и физико-химические свойства сплавов. Режим термической обработки выбирают в зависимости от сплавов и метода изготовления из них заготовок и деталей.

Термическая обработка деталей, изготовленных из алюминиевых сплавов, основана на том, что с понижением температуры растворимость многих элементов в твердом алюминии уменьшается. При нагреве под закалку алюминиевые сплавы неполностью кристаллизуются. Если сплав перегрет, в результате чего структура получилась с крупным зерном, то такой сплав бракуется. Поэтому термист должен быть внимателен к нагреву деталей из алюминиевых сплавов.

Термическая обработка деформируемых алюминиевых сплавов. Деформируемые алюминиевые сплавы подвергают таким видам термической обработки, как отжиг, закалка, старение.

Отжиг применяют для заготовок с целью придания материалу пластических свойств, необходимых для выполнения операций, которые связаны с обработкой давлением в холодном состоянии. В зависимости от сплава и назначения полуфабрикатов применяют высокий, низкий и полный отжиг.

Высокий отжиг (310-350°С) предназначается для полного разупрочнения (снятия наклепа) материала, происходящего после холодной пластической деформации сплавов А1, АД, AM и др.

Низкий отжиг (150-300°С) также применяют для сплавов А1, АД, AM, но с целью повышения пластичности при сохранении достаточной прочности, полученной нагартовкой.

Полный отжиг (380-450°С) применяют для полуфабрикатов, изготовленных из термически упрочняемых сплавов Д1, Д16, АК6 и т. д., чтобы получить высокую пластичность и снять упрочнение, полученное в результате закалки и старения.

Для снятия эффективности естественного старения и возвращения материала к свежезакаленному состоянию применяют нагрев в течение нескольких секунд или минут при температуре 200-250°С. Такой вид операции называют отжигом на возврат.

Закалка деформируемых алюминиевых сплавов, в основном дюралюминия Д1, Д16 и Д18, состоит только из одной операции — нагрева с охлаждением в воде при температуре 30- 40°С. Температура закалки для Д1 берется равной 495-505°С, для Д16 — 490-500°С, для Д18 — 495-510°С. Выдержка при нагреве устанавливается в зависимости от размеров деталей,

Особенность дюралюминия заключается в том, что он проявляет повышенную восприимчивость к старению при комнатной температуре. Стабилизация свойств происходит примерно через четверо суток. Искусственное старение дюралюминия неблагоприятно сказывается на механических свойствах и коррозийной стойкости.

Термическая обработка литейных алюминиевых сплавов. В отличие от деформируемых литейные алюминиевые сплавы почти все подвергаются термической обработке.

Для отливок из сплавов применяют несколько видов термической обработки.

Виды термической обработки литейных алюминиевых сплавов

Вид термической обработки

Условное обозначение термической обработки

Искусственное старение без предварительной закалки

Для улучшения обрабатываемости резанием литых деталей и повышения механической прочности

Для снятия литейных и термических напряжений, наклепа и повышения пластичности

Для применения деталей в свежезакаленном состоянии

Закалка и естественное старение

Для повышения прочностных свойств

Закалка и кратковременное старение

Для получения достаточно высокой прочности и повышение пластичности

Закалка и полное искусственное старение

Для получения максимальных прочностных свойств

Закалка и стабилизирующий отпуск

Для получения достаточной прочности и стабильной структуры

Закалка и смягчающий отпуск

Для получения повышенной пластичности за счет снижения прочностных свойств

Циклическая обработка (холодом и последующим нагревом)

Для получения деталей с более устойчивым состоянием по геометрии

Наиболее типичные режимы термической обработки отливок из алюминиевых сплавов:

Режимы термической обработки литейных алюминиевых сплавов

Термическая обработка алюминиевых сплавов. Отжиг, закалка, старение.

Термическую обработку алюминиевых профилей применяют для модификации свойств алюминиевых сплавов, из которых они сделаны, путем изменения их микроструктуры. Основными упрочняющими механизмами в алюминиевых сплавах являются упрочнение за счет легирования твердого раствора и упрочнение за счет выделений вторичных фаз. Как правило, один из этих механизмов в сплаве является доминирующим.

Твердый раствор алюминиевых сплавов

Твердый раствор получают нагревом алюминиевого сплава, при котором все имеющиеся в нем фазы растворяются с образованием одной гомогенной фазы – алюминия с растворенными в нем легирующими элементами. С повышением температуры растворимость элементов увеличивается, со снижением температуры – снижается. Механизм упрочнения заключается в том, что при достаточно быстром охлаждении алюминиевого сплава растворенные элементы остаются в атомной решетке алюминия и искажают, упруго деформируют ее. Эта искаженная атомная решетка затрудняет движение дислокаций и, следовательно, пластическую деформацию сплава и тем самым повышает его механическую прочность.

Старение алюминиевых сплавов

Алюминиевые сплавы, которые упрочняются старением, содержат определенное количество растворимых легирующих элементов, например, некоторых комбинаций из меди, магния, кремния, марганца и цинка. При соответствующей термической обработке эти растворенные атомы соединяются в виде очень малых частиц, которые выделяются внутри зерен алюминиевого сплава. Этот процесс и называют старением, так он происходит «сам собой» при комнатной температуре. Для ускорения и достижения большей эффективности упрочнения алюминиевого сплава старение проводят при повышенной температуре, скажем, 200 °С.

Закалка алюминиевых профилей на прессе

Закалка на прессе является весьма экономически выгодной технологией термической обработки алюминиевых профилей по сравнению с закалкой с отдельного нагрева. При закалке на прессе охлаждение алюминиевых профилей проводят от температуры, с которой они выходят из матрицы. Необходимое условие для закалки на прессе — интервал температур нагрева алюминиевого сплава под закалку должен совпадать с интервалом температур алюминиевых профилей на выходе из пресса. Это, в принципе, выполняется только для «мягких» и «полутвердых» алюминиевых сплавов – технического алюминия, алюминиевых сплавов серий 3ххх и 6ххх, а также малолегированных сплавов серии 5ххх (с магнием до 3 %) и некоторых алюминиевых сплавов серии 7ххх без легирования медью (7020, 7005 (наш 1915), 7003). Эффект закалки для алюминиевых сплавов 3ххх и 5ххх очень незначителен и, как правило, не принимается во внимание. Окончательные механические свойства алюминиевые сплавы 3ххх и 5ххх принимают не в результате термического упрочнения, а при последующей нагартовке, что может включать и операции термической обработки: один или несколько отжигов. Упрочняющей фазой для сплавов серии 6ххх является соединение Mg2Si.

Закалка на прессе алюминиевых профилей из сплавов АД31, 6060 и 6063

Все алюминиевые сплавы серии 6ххх могут получать закалку непосредственно на прессе. Для фиксирования растворенных фаз в твердом растворе алюминия необходимо охлаждение алюминиевых профилей на выходе из пресса со скоростью не ниже некоторой критической скорости. Эта скорость зависит от химического состава алюминиевого сплава. Обычно усиленного охлаждения вентиляторами бывает достаточно для большинства алюминиевых профилей, однако иногда бывает необходимым и охлаждение их водой или смесью воздуха и воды. Успешная закалка алюминиевых сплавов серии 6ххх зависит от толщины профиля, а также от типа сплава и его химического состава. В случае чрезмерно массивных алюминиевых профилей, например, из сплава АД33 (6061) и относительно медленной скорости прессования материал на выходе из матрицы может не достигать интервала температур, необходимого для закалки и часть частиц Mg2Si останется не растворенной. Поэтому при последующем воздушном, или даже водяном, охлаждении профилей их полной закалки не получится. В таких случаях применяют отдельный нагрев под закалку в специальных печах – обычно вертикальных с последующим охлаждением в вертикальных баках с водой. После закалки алюминиевых профилей производят их растяжение на 1,5 – 3 % для правки и снятия остаточных напряжений.

Старение алюминиевых профилей: искусственное и естественное

Заключительной операцией термической обработки алюминиевых профилей является старение, естественное или искусственное. Естественное старение происходит само собой в течение некоторого времени, разного для различных алюминиевых сплавов – от нескольких недель до нескольких месяцев. Искусственное старение производят в специальных печах старения.

Термообработка алюминиевых сплавов

Термическая обработка алюминиевых сплавов предназначена для корректировки характеристик материала с помощью воздействия высоких температур. Различными способами обработки можно добиться широкого разнообразия структуры и свойств.

Сплавы, которые содержат примеси в размере 15-18%, имеют вид твердого раствора. В качестве дополнительных компонентов применяются медь, магний, цинк, кремний и другие вещества, различное сочетание которых и их процентное соотношение прямо пропорционально влияют на свойства материала.

В обычном состоянии алюминиевые сплавы не отличаются высокой прочностью, при этом довольно пластичны. Наиболее неустойчивые сплавы включают в состав большое количество легирующих компонентов, которые влияют на равновесную структуру.

Для упрочнения алюминиевых сплавов применяется методы термообработки. Путем равномерного нагрева, который регламентируется техническими условиями, получают соответствующую структуру, необходимую для начальной стадии распада твердого раствора.

С помощью термообработки можно получить множество типов структуры материала, которые соответствуют требованиям производства. Термическая обработка позволяет создать структуру, не имеющую аналогов.

На сегодняшний день разработано множество методов термообработки алюминиевых изделий, среди которых наибольшую популярность обрели три: отжиг, закалка, старение.

Особенности термообработки алюминиевых сплавов

Алюминий и его сплавы требуют особого подхода к термообработке для достижения определенной прочности и структуры материала. Очень часто применяют несколько методов термообработки. Обычно, после закалки следует старение. Но некоторые типы материалов могут подвергаться старению без закалки.

Такая возможность появляется после отливки, когда компоненты, при повышенной скорости охлаждения, могут придать металлу необходимую структуру и прочность. Это происходит во время литья при температуре около 180 градусов. При такой температуре повышается уровень прочности и твердости, а также снижается степень тягучести.

Каждый из методов термообработки имеет некоторые особенности, которые стоит учитывать при обработке алюминиевых изделий.

Отжиг необходим для придания однородной структуры алюминиевому сплаву. С помощью этого метода состав становиться более однородным, активизируется процесс диффузии и выравнивается размер базовых частиц. Также можно добиться снижения напряжения кристаллической решетки. Температура обработки подбирается индивидуально, исходя из особенностей сплава, необходимых конечных характеристик и структуры материала.

Состав и свойства алюминиевых сплавов, упрочняемых термической обработкой

Важным этапом отжига является охлаждение, которые можно проводить несколькими способами. Обычно проводят охлаждения в печи или на открытом воздухе. Также применяется поэтапное комбинированное охлаждение, сначала в печи, а потом на воздухе.

От скорости снижения температуры напрямую зависят характеристики готового материала. Быстрое охлаждение способствует образованию перенасыщенности твердого раствора, а медленное – значительного уровня распада твердого раствора.

Закалка требуется для упрочнения материала путем перенасыщения твердого раствора. Этот метод основан на нагреве изделий температурам и быстром охлаждении. Это способствует полноценному растворению составных элементов в алюминии. Используется для обработки деформируемых алюминиевых сплавов.

Для использования этого способа нужно правильно рассчитать температуру обработки. Чем выше степень, тем меньше времени требуется на закалку. При этом стоит подобрать температуру так, чтобы она превышала значение, необходимое для растворимости компонентов, но была меньше границы расплава металла.

Методом старения достигается увеличение прочности алюминиевого сплава. Причем необязательно подвергать изделия искусственному старению, так как возможен процесс естественного старения.

В зависимости от типа старения изменяется скорость структурных изменений. Поэтому искусственное старение более предпочтительно, так как оно позволяет повысить производительность работ. Подбор температуры и времени обработки зависит от свойств материала и характеристик легирующих компонентов.

Правильное сочетание уровня нагрева и времени выдержки позволяет повысить прочность и пластичность. Такой процесс называется стабилизацией.

Методы отжига алюминиевых листов

Отжиг алюминиевых сплавов не является обязательным к применению. Но в некоторых случаях без этого способа термообработки невозможно достичь желаемых характеристик материала.

Причиной применения отжига может стать особое состояние сплава, которое может выражаться в понижении пластичности материала.

Применение отжига рекомендуется при наблюдении трех типов состояний:

  1. Свойственное литым изделиям неравновесное состояние связано с разницей температурных режимов. Скорость охлаждения литых изделий значительно превышает рекомендуемую, при которой достигается эффект равновесной кристаллизации.
  2. Пластическая деформация. Такое состояние может быть вызвано технологическими требованиями к характеристикам и форме готового изделия.
  3. Неоднородная структура материала, вызванная иными методами термообработки, в том числе закалкой и старением. В таком случае происходит выделение одного из легирующих компонентов в интерметаллидную фазу, сопровождающуюся перенасыщением компонентов.

Вышеуказанные проблемы могут устранятся методом отжига. Нормализация структуры и состояния алюминиевого сплава сопровождается повышением пластичности. В зависимости от типа неравновесного состояния подбираются различные методы отжига.

На сегодняшний день выделяют три режима отжига:

  1. Гомогенизация. Предназначен для обработки литых слитков. В процессе термической обработки слитков при высоких температурах достигается равномерная структура. Это позволяет упростить процесс проката с уменьшением количества производственных расходов. В некоторых случаях может применяться для повышения качества деформированных изделий. Температура отжига соблюдается в пределах 500 градусов с последующей выдержкой. Охлаждение можно проводить несколькими способами.
  2. Рекристаллизация. Применяется для восстановления деформированных деталей. При этом требуется предварительная обработка прессом. Температура отжига варьируется в диапазоне от 350 до 500 градусов. Время выдержки не превышает 2-х часов. Скорость и способ охлаждения не имеет особых рамок.
  3. Гетерогенизация. Дополнительная отжиг после других методов термообработки. Этот метод необходим для разупрочнения алюминиевых сплавов. Данный метод обработки позволяет понизить степень прочность с одновременным повышением уровня пластичности. Отжиг производится примерно при 400 градусах Цельсия. Выдержка обычно составляет 1-2 часа. Этот тип отжига значительно улучшает эксплуатационные характеристики металла и повышают степень сопротивления коррозии.

Закалка алюминиевых отливов

Закалка подходит не для всех типов алюминиевых сплавов. Для успешного структурного изменения, сплав должен содержать такие компоненты как медь, магний, цинк, кремний или литий. Именно эти вещества способны полноценно растворится в составе алюминия, создав структуру, имеющую отличные от алюминия свойства.

Данный тип термообработки проводиться при интенсивном нагреве, позволяющем составным элементам раствориться в сплаве, с дальнейшим интенсивным охлаждением до обычного состояния.

Термические превращения в сплавах 6060, 6063, АД31

При выборе температурного режима следует ориентироваться на количество меди. Также, нужно учитывать свойства литых изделий.

В промышленных условиях температура нагрева под закалку колеблется в диапазоне от 450 до 560 градусов. Выдержка изделий при такой температуре обеспечивает расплавление компонентов в составе. Время выдержи зависит от типа изделия, для деформированных обычно не превышает более часа, а для литых – от нескольких часов до двух суток.

Скорость охлаждения при закалке необходимо подбирать так, чтобы состав алюминиевого сплава не подвергался распаду. На промышленном производстве охлаждение проводят с помощью воды. Однако такой способ не всегда оптимально подходит, так как при охлаждении толстых изделий происходит неравномерное снижение температуры в центре и по краям изделия. Поэтому для крупногабаритных и сложных изделий применяются другие методы охлаждения, которые подбираются индивидуально.

Старение алюминиевых сплавов

Старение проводится для улучшения прочностных характеристик изделия. Этот вид термической обработки заключается в выдержке в условиях обычного температурного режима.

Повышение прочности достигается путем распада твердого раствора, что необходимо после закалки, так как закалка приводит к пресыщенности металла.

Существует два способа старения алюминиевых сплавов: естественное и искусственное.

Естественное старение происходит без предварительного нагрева при обычных температурах. Это может происходить в условиях обычного склада или промышленного помещения, где температура воздуха не превышает 30 градусов.

Естественное старение возможно из-за особого свойства алюминия, которое называется «свежезакаленное состояние». Свойства изделий значительно отличаются сразу после закалки и после некоторого времени пребывания на складе.

Искусственное старение проводится путем нагрева изделий до температуры 200 градусов. Это активирует процесс диффузии, что способствует улучшенному растворению составных элементов. Выдержка составляет от нескольких часов до нескольких суток.

Следует отметить, что искусственно состаренные сплавы можно вернуть к изначальному состоянию. Для этого нужно нагреть изделие до 250 градусов с выдержкой до одной минуты. Выдержка должна проводится в селитряной ванне в строго определенное время, с точностью до нескольких секунд.

Причем подобный возврат можно выполнять несколько раз, без потери прочности материала, но с небольшим изменением свойств. Возврат состаренного металла обычно проводят с целью восстановления пластичности, необходимой для изменения формы изделия.

Любой из типов термообработки широко используется в промышленности. Благодаря чему у производителей есть возможность получения материалов, полностью соответствующих требованиям производства. Причем такая обработка сплавов позволяет значительно улучшить свойства алюминия и получить материал, не имеющий аналогов.

Главное условие при термообработке – соблюдение требований и рекомендаций к температурному режиму обработки и времени выдержки. Малейшие отклонения могут привести к необратимым изменениям свойств материала.

Читать еще:  Производство и использование сплава меди и цинка
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector