Yoga-mgn.ru

Строительный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сварка низкоуглеродистых и среднеуглеродистых конструкционных сталей

Сварка низкоуглеродистых и среднеуглеродистых конструкционных сталей

§ 75. Сварка низколегированных сталей

Легированные стали подразделяются на низколегированные (легирующих элементов в сумме менее 2,5%), среднелегированные (от 2,5 до 10%) и высоколегированные (более 10%). Низколегированные стали делят на низколегированные низкоуглеродистые, низколегированные теплоустойчивые и низколегированные сред неуглеродистые.

Механические свойства и химический состав некоторых марок низколегированных сталей приведены в табл. 33.


33. Механические свойства низколегированных низкоуглеродистых сталей при данном химическом составе

Содержание углерода в низколегированных низкоуглеродистых конструкционных сталях не превышает 0,22%. В зависимости от легирования стали подразделяют на марганцовистые (14Г, 14Г2), кремнемарганцовистые (09Г2С, 10Г2С1, 14ГС, 17ГС и др.), хромокремнемар-ганцовистые (14ХГС и др.), марганцовоазотнованадиевые (14Г2АФ, 18Г2АФ, 18Г2АФпс и др.), марганцовониобиевая (10Г2Б), хромокремненикельмедистые (10ХСНД, 15ХСНД) и т. д.

Низколегированные низкоуглеродистые стали применяют в транспортном машиностроении, судостроении, гидротехническом строительстве, в производстве труб и др. Низколегированные стали поставляют по ГОСТ 19281 — 73 и 19282 — 73 и специальным техническим условиям.

Низколегированные теплоустойчивые стали должны обладать повышенной прочностью при высоких температурах эксплуатации. Наиболее широко теплоустойчивее стали применяют при изготовлении паровых энергетических установок. Для повышения жаропрочности в их состав вводят молибден (М), вольфрам (В) и ванадий (Ф), а для обеспечения жаростойкости — хром (X), образующий плотную защитную пленку на поверхности металла.

Низколегированные среднеуглеродистые (более 0,22% углерода) конструкционные стали применяют в машиностроении обычно в термообработанном состоянии. Технология сварки низколегированных среднеуглеродистых сталей подобна технологии сварки среднелегирован-ных сталей.

Особенности сварки низколегированных сталей. Низколегированные стали сваривать труднее, чем низкоуглеродистые конструкционные. Низколегированная сталь более чувствительна к тепловым воздействиям при сварке. В зависимости от марки низколегированной стали при сварке могут образоваться закалочные структуры или перегрев в зоне термического влияния сварного соединения.

Структура околошовного металла зависит от его химического состава, скорости охлаждения и длительности пребывания металла при соответствующих температурах, при которых происходит изменение микроструктуры и размера зерен. Если в доэвтектоидной стали получить нагревом аустенит (рис. 100), а затем сталь охлаждать с различной скоростью, то критические точки стали снижаются.


Рис. 100. Диаграмма изотермического (при постоянной температуре) распада аустенита низкоуглеродистой стали: А — начало распада, Б — конец распада, A1 — критическая точка стали, Мн и Мк — начало и конец превращения аустенита в мартенсит; 1, 2, 3 и 4 — скорости охлаждения с образованием различных структур

При малой скорости охлаждения получают структуру перлит (механическая смесь феррита и цементита). При большой скорости охлаждения аустенит распадается на составляющие структуры при относительно низких температурах и образуются структуры — сорбит, троостит, бейнит и при очень высокой скорости охлаждения — мартенсит. Наиболее хрупкой структурой является мартенситная, поэтому не следует при охлаждении допускать превращения аустенита в мартенсит при сварке низколегированных сталей.

Скорость охлаждения стали, особенно большой толщины, при сварке всегда значительно превышает обычную скорость охлаждения металла на воздухе, вследствие чего при сварке легированных сталей возможно образование мартенсита.

Для предупреждения образования при сварке закалочной мартенситной структуры необходимо применять меры, замедляющие охлаждение зоны термического влияния, — подогрев изделия и применение многослойной сварки.

В некоторых случаях в зависимости от условий эксплуатации изделий допускают перегрев, т. е. укрупнение зерен в металле зоны термического влияния сварных соединений, выполненных из низколегированных сталей.

При Высоких температурах эксплуатации изделий для повышения сопротивления ползучести (деформирование изделия при высоких температурах с течением времени) необходимо иметь крупнозернистую структуру и в сварном соединении. Но металл с очень крупным зерном обладает пониженной пластичностью и поэтому размер зерен допускается до известного предела.

При эксплуатации изделий в условиях низких температур ползучесть исключается и необходима мелкозернистая структура металла, обеспечивающая увеличенную прочность и пластичность.

Покрытые электроды и другие сварочные материалы при сварке, низколегированных сталей подбираются такими, чтобы содержание углерода, серы, фосфора и других вредных элементов в них было ниже по сравнению с материалами для сварки низкоуглеродистых конструкционных сталей. Этим удается увеличить стойкость металла шва против кристаллизационных трещин, так как низколегированные стали в значительной степени склонны к их образованию.

Технология сварки низколегированной стали. Низколегированные низкоуглеродистые стали 09Г2, 09Г2С, 10ХСНД, 10Г2С1 и 10Г2Б при сварке не закаливаются и не склонны к перегреву. Сварку этих сталей производят при любом тепловом режиме, аналогично режиму сварки низкоуглеродистой стали.

Для обеспечения равнопрочности соединения ручную сварку выполняют электродами типа Э50А. Твердость и прочность околошовной зоны практически не отличаются от основного металла.

Сварочные материалы при сварке порошковой проволокой и в защитном газе подбирают такими, чтобы обеспечить прочностные свойства металлу шва на уровне прочности, достигаемой электродами типа Э50А.

Низколегированные низкоуглеродистые стали 12ГС, 14Г, 14Г2, 14ХГС, 15ХСНД, 15Г2Ф, 15Г2СФ, 15Г2АФ при сварке могут образовывать закалочные микроструктуры и перегрев металла шва и зоны термического влияния. Количество закаливающихся структур резко уменьшается, если сварка выполняется с относительно большой погонной энергией, необходимой для уменьшения скорости охлаждения сварного соединения. Однако снижение скорости охлаждения металла при сварке приводит к укрупнению зерен (перегреву) металла шва и околошовного металла вследствие повышенного содержания углерода в этих сталях. Это особенно касается сталей 15ХСНД, 14ХГС. Стали 15Г2Ф, 15Г2СФ и 15Г2АФ менее склонны к перегреву в околошовной зоне, так как они легированы ванадием и азотом. Поэтому сварка большинства указанных сталей ограничивается более узкими пределами тепловых режимов, чем сварка низкоуглеродистой стали.

Режим сварки необходимо подбирать так, чтобы не было большого количества закалочных микроструктур и сильного перегрева металла. Тогда можно производить сварку стали любой толщины без ограничений при окружающей температуре не ниже — 10°С. При более низкой температуре необходим предварительный подогрев до 120 — 150°С При температуре ниже — 25°С сварка изделий из закаливающихся сталей запрещается. Для предупреждения большого перегрева сварку сталей 15ХСНД и 14ХГС следует проводить на пониженной погонной тепловой энергии (при пониженных значениях тока электродами меньшего диаметра) по сравнению со сваркой низкоуглеродистой стали.

Для обеспечения равнопрочности основного металла и сварного соединения при сварке этих сталей надо применять электроды типа Э50А или Э55.

Технология сварки низколегированных среднеуглеродистых сталей 17ГС, 18Г2АФ, 35ХМ и других подобна технологии сварки сред не легированных сталей.

Pereosnastka.ru

Обработка дерева и металла

Для изготовления способом сварки строительных конструкций, различного оборудования и сооружений широко применяются низкоуглеродистые и некоторые среднеуглеродистые конструкционные стали в основном спокойной и полуспокойной плавки, выпускаемые в виде листов и фасонного проката (уголок, швеллер, двутавр).

Низкоуглеродистые стали по степени свариваемости относятся к группе хорошо сваривающихся сталей и имеют наилучшую свариваемость в сравнении с другими сталями. Сварку таких сталей рекомендуется вести на максимально допустимых режимах. , Необходимые пластические свойства таких сталей обеспечиваются в шиком диапазоне режимов, поэтому, как правило, не требуется специальных технологических мероприятий для предотвращения, образования закалочных структур и появления кристаллизационных трещин.

Примеры некоторых марок низкоуглеродистых сталей с хорошей свариваемостью:
— углеродистые обыкновенного качества СтО, Ст1 пс, Ст1’ сп, Ст2 пс, Ст2 сп, СтЗ пс, СтЗ Гпс, Ст4 пс, Ст4 сп, ВСтЗ пс, ВСтЗ сп, ВСтЗ Гпс, ВСт2 сп;
— углеродистые качественные 05; 08; 10; 15; 20;
— углеродистые котельные 12К, 15К, 16К, 18К, 20К, 22К.

Для сварки низкоуглеродистых сталей применяют электроды типов Э42, Э46 с различными видами покрытий (рутиловое, целлюлозное, кислое, смешанное). Выбор типа и марки электродов должен обеспечивать равнопрочность сварного соединения с основным металлом и отсутствие дефектов в сварных швах. Примеры марок электродов: МР-3, ОЗС -4, ОЗС -6, АНО -3, АНО -4, ОММ -5, ОМА -2, ЦМ-7.

Читать еще:  Химическая и механическая подготовка поверхности под покраску

При изготовлении ответственных сварных конструкций, когда требуется обеспечить стойкость сварных соединений в условиях ударных и вибрационных нагрузок, а также в условиях пониженных и повышенных температур, применяют электроды типов Э42А, Э46А, Э50А с основным покрытием, обеспечивающие металл шва с повышенными пластическими свойствами и стойкостью против образования кристаллизационных трещин. Примеры марок таких электродов: УОНИИ -13/45, УОНИИ -13/55, СМ-11, ОЗС -2, АНО -7, ТМУ -21. Механические свойства металла швов, выполненных этими электродами, как правило, выше аналогичных свойств основного металла.

Сварка низкоуглеродистых сталей, как правило, не требует предварительного подогрева. Однако в некоторых случаях, специально сговоренных в технической документации, предварительный подогрев до температуры 120—150° применяется для предупреждения появления кристаллизационных трещин. Такая потребность иногда возникает при сварке угловых швов толстого металла, при сварке первого слоя многослойных стыковых швов толстого металла, особенно если сварка толстого металла производится при низких температурах.

Среднеуглеродистые стали для изготовления сварных конструкций находят ограниченное применение. Для изготовления строительных конструкций могут использоваться только среднеуглеродистые стали с содержанием углерода до 0,35%, имеющие удовлетворительную свариваемость. Примеры некоторых марок таких сталей:
— углеродистые обыкновенного качества: Ст5 всех групп и Ст5 Гпс;
— углеродистые качественные: 30 и 35.

Повышенное содержание углерода в таких сталях обуславливает определенные трудности при их сварке. Такие стали склонны к образованию кристаллизационных трещин в металле шва и закалочных структур в околошовной зоне. Для устранения этих нежелательных явлений, а также для обеспечения необходимой пластичности сварного соединения в большинстве случаев рекомендуется применять предварительный и сопутствующий подогрев основного металла до температуры 150—300°. В некоторых случаях рекомендуется и последующий подогрев, чтобы обеспечить замедленное остывание сварного соединения.

Сварка среднеуглеродистых сталей без предварительного подогрева при температурах ниже +5 °С не рекомендуется.

В процессе сварки среднеуглеродистых сталей необходимо выполнять определенные условия, обеспечивающие пониженное содержание углерода в металле шва и предупреждающие образование закалочных структур. Необходимо стремиться уменьшать долю основного металла в металле шва. С этой целью обязательно применять сварные соединения с разделкой кромок; применять электроды с пониженным содержанием углерода в стержне; сварку вести на режимах, обеспечивающих минимальное проплавление основного металла (небольшой диаметр электрода, пониженная величина сварочного тока); стремиться получить шов с повышенным значением коэффициента формы шва. Для сварки рекомендуется использовать электроды с повышенным коэффициентом наплавки. Рекомендуется уменьшать скорость сварки, при многослойной сварке избегать наложения широких слоев, заполняя каждый слой в несколько проходов. Сварку рекомендуется вести короткой дугой участками небольшой длины. Все эти мероприятия будут создавать дополнительные условия для замедления остывания сварного соединения.

Для сварки среднеуглеродистых сталей применяют электроды типов Э42А, Э46А, Э50А с основным покрытием. Примеры марок таких электродов: УОНИИ -13/45, УОНИИ -13/55, УП-1/45, ДСК .-50, АНО -7, ТМУ -21.

Для сварки среднеуглеродистых сталей чаще всего mil-меняют предварительный подогрев до температуры 250 — 300°С. Однако сварка с подогревом обладает серьезными эксплуатационными недостатками. Кроме того, чрезмерный подогрев может вызвать образование трещин вследствие увеличения провара основного металла и связанного с этим повышения содержания углерода в металле шва.

Для снижения доли основного металла в металле шва дуговую сварку среднеуглеродистых сталей, как правило, ведут с разделкой кромок на режимах, обеспечивающих минимальное проплавление основного металла и максимальное значение коэффициента формы шва.

Сварку под флюсом среднеуглеродистых сталей ведут на режимах, не характерных для этого высокопроизводительного способа, в связи с чем он не получил широкого применения при изготовлении конструкций из среднеуглеродистых сталей.

Для сварки под флюсом применяют флюсы АН-348-А и ОСЦ -45 и сварочные проволоки Св-08А, Св-08ГА и Св-10Г2.

Для ручной сварки среднеуглеродистых сталей применяют электроды с фтористокальциевым покрытием УОНИ -13/55 и УОНИ -13/45, обеспечивающие достаточную прочность и высокую стойкость металла шва против образования кристаллизационных трещин.

Технология сварки среднеуглеродистых сталей в углекислом газе, как и сварки их покрытыми электродами и под флюсом, основана на снижении доли основного металла в металле шва и обеспечении благоприятной формы провара. Сварка в углекислом газе для изготовления конструкций из среднеуглеродистых сталей применяется мало.

Сварка низкоуглеродистых и среднеуглеродистых конструкционных сталей

К углеродистым конструкционным сталям относятся стали, содержащие 0,1 — 0,7 % углерода, который является основным легирующим элементом в сталях этой группы и определяет их механические свойства. Повышение содержания углерода усложняет технологию сварки и получение качественных сварных соединений. В сварочном производстве в зависимости от содержания углерода углеродистые конструкционные стали условно разделяют на три группы: низко-, средне- и высокоуглеродистые. Технология сварки сталей этих групп различна.

Большинство сварных конструкций в настоящее время изготовляют из низкоуглеродистых сталей, содержащих углерода до 0,25%.

Низкоуглеродистые стали относятся к хорошо сваривающимся металлам практически всеми видами и способами сварки плавлением.

Технологию сварки для этих сталей выбирают из условий соблюдения комплекса требований, обеспечивающих прежде всего равнопрочность сварного соединения с основным металлом и отсутствие дефектов в сварном соединении. Сварное соединение должно быть стойким против перехода в хрупкое состояние, а деформация конструкции должна быть в пределах, не отражающихся на ее работоспособности. Металл шва при сварке низкоуглеродистой стали незначительно отличается по своему составу от основного металла — снижается содержание углерода и повышается содержание марганца и кремния. Однако обеспечение равнопрочности при дуговой сварке не вызывает затруднений. Это достигается за счет увеличения скорости охлаждения и легирования марганцем и кремнием через сварочные материалы. Влияние скорости охлаждения в значительной степени проявляется при сварке однослойных швов, а также в последних слоях многослойного шва. Механические свойства металла околошовной зоны подвергаются некоторым изменениям по сравнению со свойствами основного металла — при всех видах дуговой сварки это незначительное упрочнение металла в зоне перегрева. При сварке стареющих (например, кипящих и полуспокойных) низкоуглеродистых сталей на участке рекристаллизации околошовной зоны возможно снижение ударной вязкости металла. Металл околошовной зоны охрупчи-вается более интенсивно при многослойной сварке по сравнению с однослойной. Сварные конструкции из низкоуглеродистой стали иногда подвергают термической обработке. Однако у конструкций с угловыми однослойными швами и многослойными, наложенными с перерывом, все виды термической обработки, кроме закалки, приводят к снижению прочности и повышению пластичности металла шва. Швы, выполненные всеми видами и способами сварки плавлением, имеют вполне удовлетворительную стойкость против образования кристаллизационных трещин из-за низкого содержания углерода. Однако при сварке стали с верхним пределом содержания углерода могут появиться кристаллизационные трещины, прежде всего в угловых швах, первом слое многослойных стыковых швов, односторонних швах с полным проваром кромок и первом слое стыкового шва, сваренного с обязательным зазором.

Большое распространение при изготовлении конструкций из низкоуглеродистых сталей получила ручная сварка покрытыми электродами. В зависимости от требований к сварной конструкции и прочностных показателей свариваемой стали выбирают тип электрода. В последние годы широкое применение получили электроды типа Э46Т с рутиловым покрытием. Для особо ответственных конструкций используют электроды с фтористо-кальциевым и фтористо-кальциеворутиловым покрытием типа Э42А, обеспечивающие повышенную стойкость металла шва против кристаллизационных трещин и более высокие пластические свойства. Применяются также высокопроизводительные электроды с железным порошком в покрытии и электроды для сварки с глубоким проплавлением. Род и полярность тока выбирают в зависимости от особенностей электродного покрытия.

Несмотря на хорошую свариваемость низкоуглеродистых сталей иногда для предотвращения_ образования закалочных структур в околошовной зоне‘следует предусматривать специальные технологические меры. Поэтому при сварке первого слоя многослойного шва и угловых швов на толстом металле рекомендуется предварительный подогрев его до 120— 150 °С, чем обеспечивается стойкость металла против появления кристаллизационных трещин. Для уменьшения скорости охлаждения перед исправлением дефектных участков необходимо выполнять местный подогрев до 150° С, что будет препятствовать понижению пластических свойств наплавленного металла.

Читать еще:  Сталь 9ХС ГОСТ 5950 оптом и в розницу

Низкоуглеродистые стали газовой сваркой сваривают без особых затруднений нормальным пламенем и, как правило, без флюса. Мощность пламени при левом способе выбирают из расчета расхода 100— 130 дм3/ч ацетилена на 1 мм толщины металла, а при правом — 120—150 дм3/ч. Высококвалифицированные сварщики работают с пламенем большой мощности — 150—200 дм 3/ч ацетилена, используя при этом присадочную проволоку большего, чем при обычной сварке диаметра. Для получения равнопрочного с основным металлом соединения при сварке ответственных конструкций следует применять кремнемарганцовистую сварочную проволоку. Конец проволоки должен быть погружен в ванну расплавленного металла. В процессе сварки нельзя отклонять сварочное пламя от ванны расплавленного металла, так как это может привести к окислению металла шва кислородом. Для уплотнения и повышения пластичности наплавленного металла осуществляют проковку и последующую термообработку.

Отличие среднеуглеродистых сталей от низкоуглеродистых в основном состоит в различном содержании углерода. Среднеуглеродистые стали содержат 0,26 — 0,45% углерода. Повышенное содержание углерода создает дополнительные трудности при сварке конструкций из этих сталей. К ним относится низкая стойкость против кристаллизационных трещин, возможность образования малопластичных закалочных структур и трещин в околошовной зоне и трудность обеспечения рав-нопрочности металла шва с основным металлом. Повышение стойкости металла шва против кристаллизационных трещин достигается снижением количества углерода в металле шва путем применения электродных стержней и присадочной проволоки с пониженным содержанием углерода, а также уменьшения доли основного металла в металле шва, что достигается сваркой с разделкой кромок на режимах, обеспечивающих минимальное проплавление основного металла и максимальное значение коэффициента формы шва. Этому же способствуют электроды с большим коэффициентом наплавки. Для преодоления трудностей, возникающих при сварке изделий из среднеуглеродистых сталей, выполняют предварительный и сопутствующий подогрев, модифицирование металла шва и двухдуговую сварку в раздельные ванны. Ручную сварку среднеуглеродистых сталей ведут электродами с фтористо-кальциевым покрытием марок УОНИ-13/55 и УОНИ-13/45, которые обеспечивают достаточную прочность и высокую стойкость металла шва против образования кристаллизационных трещин. Если к сварному соединению предъявляются требования высокой пластичности, необходимо подвергнуть его последующей термообработке. При сварке следует избегать наложения широких валиков, сварку выполняют короткой дугой, небольшими валиками. Поперечные движения электрода нужно заменять продольными, кратеры заваривать или выводить на технологические пластины, так как в них могут образовываться трещины.

Газовую сварку среднеуглеродистых сталей ведут нормальным или слегка науглероживающим пламенем мощностью 75— 100 дм3/ч ацетилена на 1 мм толщины металла только левым способом, уменьшающим перегрев металла. Для изделий толщиной свыше 3 мм рекомендуется общий подогрев до 250 — 350 °С или мест-ный —до 600—650 °С. Для сталей с содержанием углерода на верхнем пределе целесообразно применять специальные флюсы. Для улучшения свойств металла используют проковку и термическую обработку.

К высокоуглеродистым сталям относят стали с содержанием углерода в пределах 0,46 — 0,75%. Эти стали, как правило, не пригодны для изготовления сварных конструкций. Однако необходимость сварки возникает при ремонтных работах. Сварка производится с предварительным, а иногда с сопутствующим подогревом и последующей термообработкой. При температуре ниже 5 °С и на сквозняках сварку выполнять нельзя. Остальные технологические приемы такие же, как и для сварки среднеуглеродистых сталей. Газовую сварку высокоуглеродистых сталей осуществляют нормальным или слегка науглероживающим пламенем мощностью 75 — 90 дм3/ч ацетилена на 1 мм толщины металла с подогревом до 250—300 °С. Применяют левый способ сварки, позволяющий уменьшить время перегрева и время пребывания металла сварочной ванны в расплавленном состоянии. Используются флюсы того же состава, что и для среднеуглеродистых сталей. После сварки шов проковывается с последующей нормализацией или отпуском.

В последние годы находят применение термоупроч-ненные углеродистые стали. Стали повышенной прочности позволяют уменьшить толщину изделий. Режимы и техника сварки термоупрочненных сталей такие же, как и для обычной углеродистой стали того же состава. Сварочные материалы выбирают с учетом обеспечения равнопрочности металла шва с основным металлом. Главным затруднением при сварке является разупрочнение участка околошовной зоны, подвергающегося нагреву до 400 — 700 °С. Поэтому для термоупрочненной стали рекомендуются маломощные режимы сварки, а также способы сварки с минимальным теплоотводом в основной металл.

Применяют также стали с защитными покрытиями. Наибольшее распространение получила оцинкованная сталь при изготовлении различных конструкций и сани-тарно-технических трубопроводов. При сварке оцинкованной стали в случае попадания цинка в’ сварочную ванну создаются условия для появления пор и трещин Поэтому цинковое покрытие необходимо удалять со свариваемых кромок. Учитывая, что следы цинка на кромках остаются, следует принимать дополнительные меры по предупреждению образования дефектов: по сравнению со сваркой обычной стали зазор увеличивают в 1,5 раза, а скорость сварки уменьшают на 10 — 20%, электрод вдоль шва перемещают с продольными колебаниями. При ручной сварке оцинкованной стали лучшие результаты получают при работе электродами с рути-ловым покрытием, обеспечивающими минимальное содержание кремния в металле шва. Но можно применять и другие электроды. В связи с тем, что пары цинка чрезвычайно токсичны, сварку оцинкованной стали можно производить при наличии сильной местной вентиляции. После окончания сварочных работ необходимо нанести защитный слой на поверхность шва и восстановить его на участке околошовной зоны.

Особенности сварки углеродистой стали

Выбор технологии сварки углеродистых сталей зависит от содержания в них углерода. Малоуглеродистые марки (C до 0,25%) обычно свариваются хорошо, среднеуглеродистые (C 0,25-0,6%) требуют дополнительных мероприятий. Высокоуглеродистые (C от 0,6 до 2,0%) обычно в сварных соединениях не используются или свариваются с применением особых технологий.

Дуговая сварка конструкционных углеродистых и низколегированных сталей

При соблюдении всех технологических правил эти марки свариваются без проблем. В случаях создания ответственных конструкций швы проверяют на наличие дефектов, к которым относятся поры, трещины, непровары, подрезы.

При выборе марки электродов для низкоуглеродистых сталей рекомендуется соблюдать ряд условий. Электроды должны обеспечивать:

  • равнопрочность сварного шва и основного металла;
  • образование бездефектного сварного шва;
  • получение требуемого химсостава металла на шве;
  • образование стойких сварных соединений, способных выдерживать вибрационные и ударные воздействия, низкие и высокие температуры.

Для ручной сварки низкоуглеродистых сталей используют электроды марок АНО-1, АНО-2, СМ-5, УОНИ 13/45 и другие.

Такие стали содержат повышенное количество углерода, который провоцирует появление кристаллизационных трещин в шве, закалочных структур малой пластичности и трещин в зоне, прилегающей к шву. Поэтому для снижения негативных проявлений используются:

  • предварительный нагрев детали до 100-200°C, для толстых изделий – несколько выше;
  • для толстых деталей – сварка способами «каскад» и «горка»;
  • медленное охлаждение;
  • легирование металла шва кремнием и марганцем, позволяющее достичь равнопрочности металлов шва и основы;
  • электроды с низким содержанием углерода.

Среднеуглеродистую сталь сваривают с использованием электродов марок УОНИ 13/45, УОНИ 13/55, ОЗС-2, УОНИ 13/65.

При сварке покрытыми электродами реакция на термическое воздействие низколегированных низкоуглеродистых сталей практически аналогична углеродистым нелегированным маркам. Отличие состоит в большей склонности к образованию закалочных структур в зоне шва при ускоренном охлаждении. Чтобы сварить низколегированную низкоуглеродистую сталь, необходимо обеспечить равные показатели прочности основного металла и материала шва. Для этого шов легируют через сварочную проволоку. Сварочная проволока должна содержать малое количество углерода и как можно меньше серы.

В данном случае используют электроды марок АНО-1, АНО-7, АНО-8, УОНИ 13/55, СМ-11, УОНИ 13/45.

Газовая сварка углеродистых сталей

Для работы с такими сталями применяют кислородно-ацетиленовую смесь. Даже без использования флюса при сварке листового проката толщиной до 5 мм получают шов с хорошими механическими характеристиками. Процесс требует медленного охлаждения. Для исключения пористости рекомендуется использовать присадочные материалы, содержащие углерода меньше, по сравнению с основным металлом.

Читать еще:  П-образный профиль – что это такое и где применяется

Для этих марок характерна большая вероятность образования трещин, поскольку они обладают способностью закаливаться на воздухе. Избежать этого поможет охлаждение шва медленными темпами. При работе со среднеуглеродистыми сталями используют только ацетиленокислородные смеси, использование газов-заменителей не рекомендуется.

Для высокоуглеродистых сталей в основном применяют не сварку, а наплавку или пайку.

Свариваемость углеродистых конструкционных сталей

Установки для автоматической сварки продольных швов обечаек — в наличии на складе!
Высокая производительность, удобство, простота в управлении и надежность в эксплуатации.

Сварочные экраны и защитные шторки — в наличии на складе!
Защита от излучения при сварке и резке. Большой выбор.
Доставка по всей России!

Углеродистыми конструкционными сталями называются такие, в которых содержание углерода находится в пределах 0,1— 0,6%, а количество остальных примесей не превышает: Мn — 0,7%; Si — 0,4%; Р — 0,05%; S — 0,07%; O2— 0,05%. Возможно наличие и других случайных примесей, содержание которых в таких сталях должно быть не более: Сu — 0,5%; As — 0,05%; Сr — 0,3%; Ni — 0,3%. Обычно в сварных конструкциях применяют углеродистую сталь, выплавляемую в мартеновских печах и имеющую пониженное содержание вредных газов и примесей (N2, S и Р).

В зависимости от содержания С углеродистые конструкционные стали разделяют на низко-, средне- и высокоуглеродистые.

К низкоуглеродистым относят стали, содержащие до 0,25% С (СтЗ, стали 10, 15, 20, М16С, 22К и др.). Они обладают хорошей свариваемостью. Металл шва по своему химическому составу обычно несколько отличается от основного (понижено содержание углерода и повышено — марганца и кремния). Уменьшение содержания углерода может привести к снижению прочности сварного шва. Чтобы избежать этого, в металл шва вводят дополнительно марганец и кремний. Повышению прочности способствует также ускоренное охлаждение шва. Поэтому при сварке низкоуглеродистых сталей обеспечить равнопрочность сварного шва основному металлу легко.

К среднеуглеродистым конструкционным сталям относят спокойные стали, в которых содержание С колеблется в пределах 0,26 — 0,45% (Ст5, стали 25, 30, 35, 40, 25Г, 30Г, 35Г и др.). Повышенное содержание углерода ухудшает свариваемость этих сталей, так как оно снижает стойкость металла шва к образованию кристаллизационных трещин и делает возможным появление в околошовной зоне малопластичных структур и холодных трещин.

Усиление чувствительности швов к кристаллизационным трещинам объясняется тем, что углерод повышает степень дендритной неоднородности распределения серы и способствует выделению ее по границам кристаллитов в виде легкоплавких сульфидных включений, увеличивающих ТИХ. Чтобы получить качественный шов, следует снизить содержание углерода в нем за счет применения соответствующих сварочных материалов и уменьшения доли основного металла в наплавленном. Необходимую же равнопрочность шва основному металлу получают дополнительным легированием элементами, упрочняющими феррит (марганец, кремний).

Повышенное содержание углерода в среднеуглеродистых сталях облегчает возможность появления мартенсита в околошовной зоне. Для углеродистого мартенсита характерны высокая твердость (HV > 600) и хрупкость, объясняемые пластинчатой формой его строения. Протекающее же при низких температурах ( углеродистые конструкционные стали | Рейтинг: 0.0 /
Всего комментариев: 0

Сварка низкоуглеродистых и среднеуглеродистых конструкционных сталей

При сварке низкоуглеродистых и среднеуглеродистых конструкционных сталей необходимо учитывать, к какой группе свариваемости сталей относится та или иная марка стали. Среднеуглеродистые конструкционные стали содержат большее количество углерода, чем низкоуглеродистые. А углерод сильно влияет на свариваемость сталей.

Сварка низкоуглеродистых конструкционных сталей

В химическом составе низкоуглеродистых сталей содержится до 0,25% углерода, свариваемость у таких сталей хорошая. Они относятся к первой группе свариваемости и свариваются без ограничений всеми видами сварки.

Электроды для сварки низкоуглеродистых сталей

При ручной дуговой сварке низкоуглеродистых сталей, выбор электродов для их сваривания происходит, исходя из многих требований:

  1. Необходимо обеспечить прочность сварного шва, равную прочности основного металла;
  2. Дефекты в сварных швах не допускаются;
  3. Сварной шов должен иметь определённый, требуемый химический состав;
  4. Сварное соединение должно сохранять работоспособность при воздействии на него вибрации, ударных нагрузок, а также при повышенных или пониженных температурах.

В зависимости от назначения сварной конструкции, условий эксплуатации и требований, предъявляемых к ней, низкоуглеродистые стали сваривают электродами Э38, Э42 и Э42А. Этим типам электродов соответствуют марки ОММ-5, СМ-5, УМ-7, ОМА-2, УОНИ-13/45, СМ-11 и другие марки.

Электроды типа Э38 предназначены для металлоконструкций, к которым не предъявляются высоких требований. Электродами типа Э42 сваривают ответственные конструкции из низкоуглеродистых сталей, к которым предъявляются повышенные требования. Электроды типа Э42А предназначены для сварки особо ответственных металлоконструкций.

Режимы сварки низкоуглеродистых сталей

Режимы сварки низкоуглеродистых сталей, в зависимости от типа электрода, представлены в таблице:

Перед сваркой необходимо произвести прокалку электродов. Рекомендуемая температура прокалки электродов зависит от их марки и должна быть указана в паспорте на электроды.

Сварка среднеуглеродистых конструкционных сталей

Сварка среднеуглеродистых сталей осложняется повышенным содержанием углерода (до 0,45%) в их составе, что может привести к образованию холодных трещин при сварке, а также к формированию мало пластичных закалочных структур в зоне термического влияния.

Для того чтобы уменьшить риск образования трещин в металле сварного шва, необходимо снизить в нём содержание углерода. Этого можно добиться, выбрав для сварки электроды с пониженным содержанием углерода, а также путём уменьшения доли основного металла в сварном шве.

Электроды для сварки среднеуглеродистых сталей и выбор режимов сварки

Сварку среднеуглеродистых сталей производят электродами следующих марок: УОНИ-13/45, УОНИ-13/55, УОНИ-13/65, ОЗС-2, АНО-7, АНО-8, АНО-11 и другими маркими.

Рекомендуемые режимы сварки, в зависимости от марки электрода, представлены в таблице ниже, а также, в таблице выше по тексту:

Для того, уменьшить риск возникновения закалочных структур, перед сваркой выполняют предварительный подогрев изделия, а во время сварки производят сопутствующий подогрев.

Рекомендуемая температура предварительного подогрева составляет 100-200°C. При сварке толстого металла, температура подогрева несколько выше. Подогрев выполняют на расстоянии 50-70мм от сварного шва. По окончании сварки рекомендуется обеспечить медленное охлаждение сварного соединения.

Сварку металла большой толщины выполняют, используя схему сварки «каскадом» или «горкой». Подробнее об этих схемах рассказано на странице «Технология ручной дуговой сварки Ч.3. Техника ручной дуговой сварки». Применение этих схем способствует замедлению охлаждения сварного соединения. И это позволяет снизить риск возникновения закалочных структур в сварном шве и зоне термического влияния.

Газовая сварка низкоуглеродистых и среднеуглеродистых сталей

При газовой сварке металлоконструкций, состоящих из тонколистовой углеродистой стали, используется нормальное сварочное пламя. В средней, восстановительной зоне пламени происходит восстановление железа из его оксидов. Благодаря этому, в качестве сварочной проволоки при газовой сварке низкоуглеродистых сталей применяют проволоку марок Св-08 или Св-08А. Но, для того, чтобы процесс раскисления металла происходил ещё эффективнее, рекомендуют использовать проволоку марок Св-08ГА или Св-08ГС.

Чтобы уменьшить риск образования кристаллизационных трещин при газовой сварке среднеуглеродистых сталей, сварочные материалы необходимо выбирать с пониженным содержанием углерода, не более 0,3% (по возможности, не более 0,2%).

Для сварки тонкого металла, толщиной до 3мм, применяют левый способ газовой сварки. Средний расход ацетилена составляет, при этом, 120-150л/ч из расчёта на миллиметр толщины свариваемого металла.

Для сваривании металла большей толщины, применяют правый способ сварки. Этот способ сварки обеспечивает более высокую производительность при сваривании больших толщин, по сравнению с левым способом. В этом случае расход ацетилена составляет 120-150л/ч из расчёта на 1мм толщины основного металла. Чтобы избежать перегрева металла в зоне сварки, расход ацетилена при газовой сварке среднеуглеродистых сталей рекомендуется уменьшать.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector