Yoga-mgn.ru

Строительный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сплавы из алюминия и их применение

Какие бывают сплавы алюминия?

Современный мир и промышленность невозможно представить без алюминия. Когда-то этот легкий металл серебристо-белого цвета использовался для изготовления ювелирных украшений и был по цене эквивалентен серебру из-за сложности его получения. Появление же новых методов добычи алюминия из электролитов, созданных около века назад независимо друг от друга французом Полем Эру и американцем Чарльзом Холлом, стало настоящей сенсацией.

Резкое снижение себестоимости алюминия позволило его применять в различных сферах промышленности, начиная от изготовления посуды и заканчивая космическими технологиями. При этом реально в промышленности используется не первичный чистый алюминий, а сплавы на его основе. Применение же сплавов позволяет получить специальные характеристики материала.

Разновидности алюминиевых сплавов

Все существующие сегодня алюминиевые сплавы алюминия можно разделить на следующие группы:

• алюминий для раскисления.

Вторая классификация алюминиевых сплавов основана на их химическом составе:

• силумин (содержание кремния 4-13%);

• дуралюмин (содержание меди 2,2-5,2%, присутствует также марганец, магний);

• магналий (доля магния 1-13%).

Химический состав алюминиевого сплава определяет его сферу применения. Например, дуралюмин широко используется в транспортном машиностроении и авиастроении, а из магналия изготавливают деформируемые металлические элементы, фасонные отливки.

Самые распространенные сплавы алюминия, применяющиеся сегодня в промышленности

Общее число сплавов алюминия насчитывает десятки наименований, среди которых наиболее широко используются следующие:

Сплав относится к категории деформируемых и используется для производства строительных конструкций и отдельных элементов. Радиаторов охлаждения, проволоки, профилей, штамповок, прутков и других изделий, к которым не предъявляются жесткие требования по прочности. Также сплав известен под маркировками 6063 и 1310.

Сплав также относится к категории деформируемых и используется для производства труб, силовых элементов в машиностроении и авиастроении. Особенность сплава в способности выдерживать температуры до 230 градусов Цельсия. Сплав известен также под маркировкой 1160.

• Сплавы ак7п, ак7ч, ак9ч.

Группа сплавов относится к категории литейных, поэтому применяется при изготовлении различных фасонных отливок, алюминиевых чушек и других изделий.

Также относится к категории литейных и используется при производстве элементов для трубопроводного и металлургического оборудования. также сплав Ак12 известен под маркировкой Ал2.

В заключение укажем, что стоимость различных сплавов из алюминия колеблется в весьма широких пределах, поэтому важно правильно подбирать конкретный из них, чтобы получить качественную деталь с минимальной себестоимостью. Помогут в этом при необходимости сотрудники компании Переплав.ру, которая специализируется на продаже алюминиевых сплавов в центральном регионе России.

Алюминий и его сплавы: характеристика, свойства, применение

Алюминий — серебристо-белый легкий парамагнитный металл. Впервые получен физиком из Дании Гансом Эрстедом в 1825 году. В периодической системе Д. И. Менделеева имеет номер 13 и символ Al, атомная масса равна 26,98.

Производство алюминия

Для производства алюминия используют бокситы — это горная порода, которая содержит гидраты оксида алюминия. Мировые запасы бокситов почти не ограничены и несоизмеримы с динамикой спроса.

Боксит дробят, измельчают и сушат. Получившуюся массу сначала нагревают паром, а затем обрабатывают щелочью — в щелочной раствор переходит большая часть оксида алюминия. После этого раствор длительно перемешивают. На этапе электролиза глинозем подвергают воздействию электрического тока силой до 400 кА. Это позволяет разрушить связь между атомами кислорода и алюминия, в результате чего остается только жидкий металл. После этого алюминий отливают в слитки или добавляют к нему различные элементы для создания алюминиевых сплавов.

Алюминиевые сплавы

Наиболее распространенные элементы в составе алюминиевых сплавов — медь, марганец, магний, цинк и кремний. Реже встречаются сплавы с титаном, бериллием, цирконием и литием.

Алюминиевые сплавы условно разделяют на две группы: литейные и деформируемые.

Для изготовления литейных сплавов расплавленный алюминий заливают в литейную форму, которая соответствует конфигурации получаемого изделия. Эти сплавы часто содержат значительные примеси кремния для улучшения литейных свойств.

Деформируемые сплавы сначала разливают в слитки, а затем придают им нужную форму.

Происходит это несколькими способами в зависимости от вида продукта:

  1. Прокаткой, если необходимо получить листы и фольгу.
  2. Прессованием, если нужно получить профили, трубы и прутки.
  3. Формовкой, чтобы получить сложные формы полуфабрикатов.
  4. Ковкой, если требуется получить сложные формы с повышенными механическими свойствами.

Марки алюминиевых сплавов

Для маркировки алюминиевых сплавов согласно ГОСТ 4784-97 пользуются буквенно-цифровой системой, в которой:

  • А — технический алюминий;
  • Д — дюралюминий;
  • АК — алюминиевый сплав, ковкий;
  • АВ — авиаль;
  • В — высокопрочный алюминиевый сплав;
  • АЛ — литейный алюминиевый сплав;
  • АМг — алюминиево-магниевый сплав;
  • АМц — алюминиево-марганцевый сплав;
  • САП — спеченные алюминиевые порошки;
  • САС — спеченные алюминиевые сплавы.

После первого набора символов указывается номер марки сплава, а следом за номером — буква, которая обозначает его состояние:

  • М — сплав после отжига (мягкий);
  • Т — после закалки и естественного старения;
  • А — плакированный (нанесен чистый слой алюминия);
  • Н — нагартованный;
  • П — полунагартованный.

Виды и свойства алюминиевых сплавов

Алюминиево-магниевые сплавы

Эти пластичные сплавы обладают хорошей свариваемостью, коррозийной стойкостью и высоким уровнем усталостной прочности.

В алюминиево-магниевых сплавах содержится до 6% магния. Чем выше его содержание, тем прочнее сплав. Повышение концентрации магния на каждый процент увеличивает предел прочности примерно на 30 МПа, а предел текучести — примерно на 20 МПа. При подобных условиях уменьшается относительное удлинение, но незначительно, оставаясь в пределах 30–35%. Однако при содержании магния свыше 6% механическая структура сплава в нагартованном состоянии приобретает нестабильных характер, ухудшается коррозийная стойкость.

Для улучшения прочности в сплавы добавляют хром, марганец, титан, кремний или ванадий. Примеси меди и железа, напротив, негативно влияют на сплавы этого вида — снижают свариваемость и коррозионную стойкость.

Алюминиево-марганцевые сплавы

Это прочные и пластичные сплавы, которые обладают высоким уровнем коррозионной стойкости и хорошей свариваемостью.

Для получения мелкозернистой структуры сплавы этого вида легируют титаном, а для сохранения стабильности в нагартованном состоянии добавляют марганец. Основные примеси в сплавах вида Al-Mn — железо и кремний.

Сплавы алюминий-медь-кремний

Сплавы этого вида также называют алькусинами. Из-за высоких технических свойств их используют во втулочных подшипниках, а также при изготовлении блоков цилиндров. Обладают высокой твердостью поверхности, поэтому плохо прирабатываются.

Алюминиево-медные сплавы

Механические свойства сплавов этого вида в термоупрочненном состоянии порой превышают даже механические свойства некоторых низкоуглеродистых сталей. Их главный недостаток — невысокая коррозионная стойкость, потому эти сплавы обрабатывают поверхностными защитными покрытиями.

Алюминиево-медные сплавы легируют марганцем, кремнием, железом и магнием. Последний оказывает наибольшее влияние на свойства сплава: легирование магнием значительно повышает предел текучести и прочности. Добавление железа и никеля в сплав повышает его жаропрочность, кремния — способность к искусственному старению.

Алюминий-кремниевые сплавы

Сплавы этого вида иначе называют силуминами. Некоторые из них модифицируют добавками натрия или лития: наличие буквально 0,05% лития или 0,1% натрия увеличивает содержание кремния в эвтектическом сплаве с 12% до 14%. Сплавы применяются для декоративного литья, изготовления корпусов механизмов и элементов бытовых приборов, поскольку обладают хорошими литейными свойствами.

Сплавы алюминий-цинк-магний

Прочные и хорошо обрабатываемые. Типичный пример высокопрочного сплава этого вида — В95. Подобная прочность объясняется высокой растворимостью цинка и магния при температуре плавления до 70% и до 17,4% соответственно. При охлаждении растворимость элементов заметно снижается.

Читать еще:  § 6. ТЕРМИЧЕСКАЯ ОБРАБОТКА (ЗАКАЛКА И ОТПУСК)

Основной недостаток этих сплавов — низкую коррозионную стойкость во время механического напряжения — исправляет легирование медью.

Авиаль

Авиаль — группа сплавов системы алюминий-магний-кремний с незначительными добавлениями иных элементов (Mn, Cr, Cu). Название образовано от сокращения словосочетания «авиационный алюминий».

Применять авиаль стали после открытия Д. Хансоном и М. Гейлером эффекта искусственного состаривания и термического упрочнения этой группы сплавов за счет выделения Mg2Si.

Эти сплавы отличаются высокой пластичностью и удовлетворительной коррозионной стойкостью. Из авиаля изготавливают кованые и штампованные детали сложной формы. Например, лонжероны лопастей винтов вертолетов. Для повышения коррозионной стойкости содержание меди иногда снижают до 0,1%.

Также сплав активно используют для замены нержавеющей стали в корпусах мобильных телефонов.

Физические свойства

  • Плотность — 2712 кг/м 3 .
  • Температура плавления — от 658°C до 660°C.
  • Удельная теплота плавления — 390 кДж/кг.
  • Температура кипения — 2500 °C.
  • Удельная теплота испарения — 10,53 МДж/кг.
  • Удельная теплоемкость — 897 Дж/кг·K.
  • Электропроводность — 37·10 6 См/м.
  • Теплопроводность — 203,5 Вт/(м·К).

Химический состав алюминиевых сплавов

Алюминиевые сплавы
МаркаМассовая доля элементов, %Плотность, кг/дм³
ГОСТISO 209-1-89Кремний (Si)Железо (Fe)Медь (Cu)Марганец (Mn)Магний (Mg)Хром (Cr)Цинк (Zn)Титан (Ti)ДругиеАлюминий не менее
КаждыйСумма
АД000A199,8 1080A0,150,150,030,020,020,060,020,0299,82,7
АД00 1010A199,7 1070A0,20,250,030,030,030,070,030,0399,72,7
АД00Е 1010ЕЕА199,7 13700,10,250,020,010,020,010,04Бор:0,02 Ванадий+титан:0,020,199,72,7

Применение алюминия

Ювелирные изделия

В далеком прошлом из-за высокой стоимости алюминия его использовали для изготовления ювелирных изделий. Так, весы с алюминиевыми и золотыми чашами были подарены Д. И. Менделееву в 1889 г.

Когда себестоимость алюминия снизилась, мода на ювелирные изделия из этого металла прошла. Но и в наши дни его используют для изготовления бижутерии. В Японии, например, алюминием заменяют серебро при производстве национальных украшений.

Столовые приборы

По-прежнему пользуются популярностью столовые приборы и посуда из алюминия. В частности, в армии широко распространены алюминиевые фляжки, котелки и ложки.

Стекловарение

Алюминий широко применяют в стекловарении. Высокий коэффициент отражения и низкая стоимость вакуумного напыления — основные причины использования алюминия при изготовления зеркал.

Пищевая промышленность

Алюминий зарегистрирован как пищевая добавка Е173. Ее используют в качестве пищевого красителя, а также для сохранения продуктов от плесени. Е173 окрашивает кондитерские изделия в серебристый цвет.

Военная промышленность

Из-за небольшого веса и низкой стоимости алюминий широко применяют при изготовлении ручного стрелкового оружия — автоматов и пистолетов.

Ракетная техника

Алюминий и его соединения используют в качестве ракетного горючего в двухкомпонентных ракетных топливах и в качестве горючего компонента в твердых ракетных топливах.

Алюмоэнергетика

В алюмоэнергетике алюминий используют для производства водорода и тепловой энергии, а также выработки электроэнергии в воздушно-алюминиевых электрохимических генераторах.

Применение алюминия и его сплавов в электротехнической промышленности

Алюминий и ряд его сплавов широко применяют в электротехнике благодаря его:

  • высокой электропроводности;
  • коррозионной стойкости;
  • малой плотности;
  • хорошим обрабатываемости давлением;
  • деко­ративному виду;
  • меньшей стоимости по сравнению с более дорогой медью и ее проводниковыми сплавами.

Электротехническая промышленность — крупнейший потреби­тель алюминия. Мировая доля ее потребления составляет 18% от общего количества алюминия. Наиболее широко алюминий используют в кабельной промышленности, на которую в настоящее время приходится около 90 % всего алюминия, потребляемого в электротехнике.

В зависимости от величины удельного электросопротивления алюминиевые электротехнические сплавы подразделяются следующим образом:

  • провод­никовые сплавы;
  • сплавы с повышенным электротехническим сопротивле­нием.

Проводниковые сплавы

Удельная электрическая проводимость электротехнического алюми­ния (А7Е, А5Е)по международному стандартусоставляет 60—62% от проводимости отожженной меди. Технический алюминий (АДО) и электротехнический алюминий (преимущественно А5Е) широко применяют для изготовления проводов, кабелей, шнуров, шин, про­филей и труб различного электротехнического назначения.

Наибольшее применение в электротехнике получили малолеги­рованные сплавы системы Аl—Мg—Si: АД31, АД31Е и их аналоги (АВЕ, 01327, АЕ1/АЕ2). Известны также сплавы на основе алюминия, опробованные в промышленных и полупромыш­ленных условиях. В основном это сплавы систем Аl—Fе—В(Ni), Аl—РЗМ, Аl—Мg(Сu), Аl—Zr, Аl—Si (01017, 01417, 01527, 01117 и др.).

При более низкой удельной проводимости (56—59% от отожжен­ной меди) алюминиевые проводниковые сплавы имеют преимущест­венно то же назначение, что и электротехнический алюминий, и их используют при необходимости обеспечения более высокой проч­ности, теплопрочности, сопротивления ползучести и других спе­циальных требований.

Из сплавов АД31, АД31Е изготавливают шины, профили и трубы, применяемые для различных электротехнических изделий; сплав АД31Е обеспечивает более высокую проводимость, чем сплав АД31 при примерно том же уровне механических свойств. Сплавы более ограниченного применения предназначены для бортовых проводов, кабелей связи, микропроводов интегральных схем и других специальных электротехнических целей. В основном это малолегированные сплавы систем, указанных выше, а также Аl—Мg—Zn, Аl—Сu и др. Все легирующие элементы и примеси, входящие в алюминиевые проводниковые сплавы, по степени снижения электропроводности отожженного алюминия делятся на две группы:

1. Элементы, незначительно снижающие проводимость при содержа­нии 0,1—0,2 % (атомн.): Zn, Ni, Si, Cu, Мо, Са, Fe, Mg, W (у > 35 МСм·м -1 );

2. Элементы, значительно уменьшающие проводимость: Сг, Li, Mn,Ti, Be, Zr (у -1 ).

Микролегирование провод­никовых сплавов поверхностно-активными добавками типа бора спо­собствует понижению удельного электросопротивления алюминиевых сплавов в определенных температурных интервалах и повышению пластичности. Считается, что небольшие по размеру атомы бора (0,09 нм.) образуют нерастворимые бориды хрома, циркония и, вы­водя их из твердого раствора и из сплава, подавляют вредное дейст­вие титана, марганца и ванадия, повышают проводимость изготав­ливаемых из них электротехнических изделий. В последние годы алюминиевые проводниковые сплавы стали более широко применять для воздушных проводов и кабелей связи (в основном, сплавы АД31Е, АВЕ). Высокая прочность прово­дов из алюминиевых сплавов позволяет увеличить размеры пролетов линии электропередач, способствует уменьшению количества повре­ждений при монтаже. По величине сопротивления действию дуги, возникающей при коротком замыкании, провода из алюминиевых сплавов занимают второе место после медных и значительно устойчивее проводов из алюминия. Стоимость алюминиевого провода в линиях электропередач составляет от 1/2 до 1/3 стоимости медного провода равной проводи­мости. На сегодняшний день перечень основных видов применения алюминия и алюминиевых сплавов в электротехнической промышленности очень широк:

  • ¾ сталеалюминиевые провода для напряжений до 750 кВ, предна­значенные для передачи электрической энергии в воздушных электри­ческих линиях и на линиях электрифицированного транспорта;
  • ¾ си­ловые кабели высокого (1—35 кВ) и сверхвысокого напряжения (до 500 кВ) с алюминиевыми жилами и оболочками;
  • ¾ кабели связи все­возможных видов и назначений;
  • ¾ трансформаторы до 70 тыс. кВт;
  • ¾ электрические двигатели до 1000 кВт и более;
  • ¾ электрические приводы;
  • ¾ корпуса электрических батарей;
  • ¾ зарядные станции для электромобилей;
  • ¾ шинопроводы;
  • ¾ провода для работы при повышенных температурах;
  • ¾ биметал­лические алюминиевомедные установочные провода и жилы для контрольных и радиочастотных кабелей;
  • ¾ разнообразная электриче­ская и светотехническая арматура.

Сортамент полуфабрикатов, используемых в этих изделиях электротехнического назначения очень разнообразен:

  • прямоугольная (сечением 1,8÷7,7×4,1¸18мм) и круглая проволока диаметром от 0,08 мм до микронных размеров в волокнистой, эмалиево- волокнистой и пластмассовой изоляции, оксидированная или незащищенная;
  • кабельные оболочки диаметром 10—100 мм неограниченной длины; однопроволочные секторные жилы сечением 50—240 мм 2 , фасонные и прямоугольные шины шириной до 380 мм;
  • листы, фольга, биметаллы; литые детали, преимущест­венно из различных сплавов алюминия.
Читать еще:  Инструмент для накручивания проволоки своими руками

Кроме специальных проводниковых сплавов, в электро- и свето­технике находят применение мало- и среднелегированные алюминие­вые деформируемые сплавы проводимостью ниже 30—32 МСм·м -1 . Наиболее широко применим сплав АД31, в ряде случаев используют сплавы 1320, 1915, 1925 (1955) и др. Сплав 1320 системы Аl— Мg—Si наиболее близок по свойствам к сплаву АД31, превосходит последний по пределам прочности и текучести, коррозионным свой­ствам, качеству поверхности после прессования, уступая по электро­проводности. Большинство вышеперечисленных сплавов применяют для полу­чения различных прессованных полуфабрикатов электротехниче­ского назначения. Профили из этих сплавов максимально прибли­жены по сечению к определенным деталям электротехнических из­делий. Кроме того, прессованные профили применяют для изготов­ления:

  • корпусов электродвигателей;
  • разных приборов;
  • стоек;
  • ребер жесткости;
  • плат, к которым крепятся детали;
  • радиаторов и охла­дителей полупроводниковых приборов непосредственно или взамен стального и медного проката, алюминиевого и медного литья.

Термическая обработка алюминиевых сплавов, применяемых в электротехнике, позволяет существенно изменять характеристики электропроводности. Так закалку сплавов АД31Е, АД31, 1320 можно осуществлять в ши­роком диапазоне температур: от 490 до 565 °С, предпочтительно при 525 °С в холодную воду. Старение — искусственное по унифициро­ванному режиму: 165 °С, выдержка 12 ч или при 140—180 С С, 12—2 ч в зависимости от требований, предъявляемых к механическим свой­ствам и электропроводности деталей. Термомеханическая обработка позволяет получить проволоку из сплава АД31Е и его аналогов с высокими значениями электропро­водности и прочностных характеристик одновременно. Наиболее распространена низкотемпературная термомеханическая обработка (НТМО) по следующей технологической схеме: закалка бухт ка­танки от 525—565 °С в воду с температурой 20 °С, волочение в про­цессе естественного старения со степенью деформации более 80 %; искусственное старение при 140—180 °С в течение 16—20 ч. Использование ТМО возможно при производстве катанки из алюминиевых сплавов не­прерывным методом. Для этого необходимо проводить волочение про­волоки сразу после прокатки катанки с регулированием скоростей прокатки и охлаждения заготовки. Новая технология получения проволоки и полуфабрикатов из гранул и в виде композиционных материалов позволяет получить материалы, обладающие особыми физико-механическими и другими свойствами, что открывает перспективу создания принципиально новых конструкций и технологических решений в электротехнике. Примером может служить биметаллическая проволока алюминий (алюминиевый сплав) — медь, позволяющая изготавливать провода вдвое более легкие, чем медные, и имеющие проводимость на уровне электротехнической меди. Те же преимущества позволяют получить алюминийуглеродные, алюминиевомедные слоистые ленты, листы, плиты.

В электротехнике есть три сектора где медь и алюминий конкурируют между собой:

  • ¾ кабели низкого и среднего напряжения;
  • ¾ трансформаторы;
  • ¾ шины электропитания.

Для кабельной продукции необходимо решить, что важнее поперечное сечение кабеля или больший вес? Алюминиевый кабель будет более дешев, чем медный, однако, медный более технологичен для различных конструктивных решений и менее проблематичен при применении в контактных соединениях. В последнее время появились медно-алюминиевые кабели, что позволило примирить конкурентов по электропроводимости: медь и алюминий.

Применение алюминия в трансформаторах вместо меди позволяет существенно экономить его вес. Различие в производственных затратах медных и алюминиевых трансформаторов компенсируют друг друга и по мнению изготовителей, выбор материала- прежде всего вопрос идеологии компании.

Требования к шинам электропитания диктуются, в первую очередь, габаритными размерами соответствующих конструкций. Большое количество токопроводящего материала и небольшое количество изоляционного материала в малом пространстве— вот что такое шины электропитания. Поэтому на первый план выдвигается ценовое различие. Большое количество электрических соединений в пределах небольшого пространства означает возможные проблемы соединений с алюминием. А когда все конструктивные решения учтены, вопрос выбора материала становится почти философским. Если в качестве критерия выбрана цена, то предпочтителен алюминий. С целью улучшить электропроводимость наалюминиевые контакты можно различным способом нанести медь. Алюминиевые и медные проводники, как правило, покрывают металлом с серебром или оловом. В цехах химического производства, на месторождениях нефти и газа, нефтегазоперерабатывающих заводах, сталелитейных заводах могут присутствовать коррозионно-активные газы, такие как сероводород. Алюминий стоек в сероводородных средах, а для медных контактов необходима оловянная металлизация.

(По материалам отечественной и зарубежной печати)

Применение алюминия и алюминиевого проката в промышленности

Алюминий – уникальный по физико-химическим параметрам материал, с небольшой плотностью, относительно малым весом, отличными антикоррозионными свойствами, высокой электро и теплопроводностью.

Алюминий хорошо поддаётся обработке давлением в холодном состоянии.

Особенно широкое распространение получили сплавы алюминия. Основная причина этого в том, что чистый алюминий обладает недостаточной механической прочностью для решения большинства технических задач. Путём введения легирующих элементов в алюминиевый сплав, прокат на выходе приобретает новые положительные свойства. Значительно увеличивается прочность, твердость, жаростойкость алюминиевого сплава, снижается электропроводность и коррозионная стойкость.

В силу своих отличных свойств, алюминий и его сплавы нашли широкое применение во многих отраслях промышленности:

  • авиастроении
  • автопроме
  • машиностроении
  • электротехнической промышленности
  • приборостроении
  • строительстве
  • химической промышленности
  • производстве товаров народного потребления

В авиастроении алюминиевые сплавы благодаря своей легкости и прочности стали главным материалом используемым в производстве. Из сплавов алюминия производят авиаконструкции, моторы, блоки, головки цилиндров, картеры, коробки передач, насосы и другие детали.

В электротехнике серебристо-белый металл и его сплавы широко применяют в производстве кабельно-проводниковой продукции, конденсаторов, выпрямителей переменного тока.

В приборостроении алюминий используют для изготовления фото- и киноаппаратуры, радиотелефонной аппаратуры, разнообразных контрольно- измерительных приборов.

Алюминий благодаря его высокой коррозионной стойкости и не токсичности нашел широкое применение при изготовлении оборудования для производства и хранения концентрированной азотной кислоты, пероксида водорода, органических веществ и пищевых продуктов.
Фольга из алюминия — широко распространённый упаковочный материал. Из алюминия изготавливают тару для консервирования и хранения продуктов сельского хозяйства, а также используют для строительства зернохранилищ и других быстровозводимых сооружений, используемых на селе.
Алюминиевые сплавы применяются в военной промышленности при производстве авиации, артиллерии, танков, ракет и взрывчатых веществ.
Чистый алюминий, с минимальным содержанием сторонних примесей активно используют в ядерной энергетике, полупроводниковой электронике, радиолокации.

Алюминиевое напыление широко используют в качестве антикоррозионного покрытия для защиты металла от воздействия разнообразных химических веществ и атмосферной коррозии.

Высокую отражающую способность алюминия используют при производстве нагревательных, осветительных рефлекторов и зеркал

Алюминий применяют в металлургии в качестве восстановителя при получении таких металлов как хром, кальций, марганец. Алюминий используют для раскисления стали и сварки стальных элементов.

В гражданском строительстве сплавы алюминия используют для создания каркасов зданий, ферм, оконных рам, лестниц и др. За рубежом, а в частности в Канаде, доля алюминия в этой отрасли составляет ≈ 30 % от общего потребления, в Соединённых Штатах — более 20 %.

Резюмируя вышесказанное можно с уверенностью сказать, что алюминий и его сплавы прочно удерживают лидирующее место среди цветных металлов по масштабам использования их в производстве и промышленности.

Алюминий в судостроении

Повышение быстроходности и устойчивости к коррозии в судостроении требует замены стальных конструкций более легкими и прочными алюминиевыми сплавами. Алюминий в судостроении – выбор компаний, ориентированных на применение новых инновационных технологий и снижение производственных затрат.

Читать еще:  Браковка текстильных стропов нормы и правила

Главные преимущества использования алюминия и сплавов на его основе для судостроительной отрасли:

  • снижение общей массы судов на пятьдесят процентов;
  • увеличение грузоподъемности без изменения мощности двигателя и увеличения затрат ДТ;
  • усовершенствование тактических и технических характеристик – скорость, угол поворота, маневренность, стойкость к отрицательному воздействию низких температур;
  • повышение устойчивости к коррозии корпуса судов, палубных надстроек и судового оборудования.

Советская промышленность с успехом использовала все достоинства алюминия в судостроении. Суда производства СССР из алюминиевых сплавов на крыльях и воздушной подушке на равных конкурировали с ведущими зарубежными компаниями Австралии, Канады и Норвегии. Единственное, в чем проигрывали тогда наши катера и лодки конкурентам – качество финишной отделки и сварного шва.

Современные технологии сварки и шлифовки позволяют российским производителям забыть о недостатках и возобновить выпуск легких, современных, маневренных и прочных судов речного и морского флота России.

Преимущества алюминия

Преимуществ у сплавов алюминия для судостроения стало намного больше:

  • небольшой вес, по сравнению со стальными конструкциями – алюминиевые надстройки на судах с корпусом из стали повышают устойчивость судна и значительно улучшают ходовые характеристики;
  • гарантированные технические характеристики сплава, регламентируемые ГОСТом;
  • относительно к весу прочность алюминия высокая – по прочности алюминиевые сплавы уступают только дорогостоящим композитам из углеродных и арамидных волокон;
  • стойкость к механическим ударам и вибрации повышает технические характеристики судна;
  • затраты труда и времени на проведение ремонтных и производственных работ снижаются на 20 процентов за счет высокой ремонтопригодности (скорость сварки в два раза выше, чем у стальных конструкций, материал легко сгибается и поддается любой механической обработке);
  • не требуется дополнительное защитное покрытие – оксидная пленка на поверхности алюминиевого сплава предохраняет корпус от гниения и коррозии;
  • алюминий, применяемый в судостроении специализированного назначения (перевозка опасных горючих и взрывоопасных грузов), отличается отсутствием образования искры и полностью нейтральными магнитными характеристиками.

Морские алюминиевые сплавы

Для морского и речного судостроения разработаны сплавы на основе алюминия с определенными характеристиками:

  • магналиевые сплавы металлов, предназначенные для сварных корпусов — алюминий, магний, марганец — АМгЗ, АМг5, АМг61;
  • дюралевый сплав для клепаного корпуса – алюминий, медь, магний и марганец — АМц и Д16;
  • для обшивки рыболовецких баркасов применяется сплав АМг5 с высокой устойчивостью к ударам и повышенной морозостойкостью;
  • зарубежные нормативы для судостроения предусматривают две серии сплавов алюминия – 5000 (легирование алюминия магнием) и 6000 (легирование магнием и кремнием). Самые распространенные в гражданском судостроении марки сплавов алюминия для листового прессованного профиля — 5083 и 6061. Маркировка Н означает упрочнение поверхности листа, а Т – термическая обработка сплавов 6000 серии.

Плотность алюминиевого сплава для судостроения – от 2640 до 2700 килограмм на метр кубический.

© Объединение производителей, поставщиков и потребителей алюминия, 2020
Все права защищены

Москва, 123100, Краснопресненская набережная, д.8 (ИНН: 7703401545, ОГРН: 1157700018222)
+7 (495) 663 99 50 info@aluminas.ru
Политика в отношении обработки персональных данных | Правовая информация | Карта сайта

Москва, 123100, Краснопресненская набережная, д.8 (ИНН: 7703401545, ОГРН: 1157700018222)
+7 (495) 663 99 50 info@aluminas.ru
Политика в отношении обработки персональных данных | Правовая информация | Карта сайта

Объединение производителей, поставщиков и потребителей алюминия (Алюминиевая Ассоциация) © 2020 Показать больше
Все права защищены

Алюминий и его сплавы

Алюминий — тринадцатый элемент периодической системы Менделеева. Легкий и мягкий металл, который легко поддается обработке. В нашей стране добывают его на Урале. Оксидная пленка, образующаяся на поверхности в воздушной среде, защищает металл от коррозии, а это полезное свойство делает его столь востребованным в автомобилестроении. Вероятно, вам приходилось слышать, что алюминий называют крылатым металлом, поскольку его используют в самолетостроении — примерно на две трети самолет состоит из алюминия и сплавов на его основе. Применяют его и в машиностроении, электропромышленности, пищевой промышленности. В производстве металлов алюминий на втором месте после железа .

Получают его методом электролиза оксида Al2O3 . По ГОСТу (11069-74) существуют марки алюминия: А, АЕ, АО, А5, А6, А7, А8, А85, А95, А97, А99, А999 и А995. Марки от А до А85 содержат не более 2 % примесей и называются алюминием технической чистоты. А примеси — это кремний и железо, они (а особенно железо) неблагоприятно влияют на свойства алюминия: ухудшают электропроводность, пластичность и стойкость к коррозиям. Полезными они бывают, только если речь идет о жаропрочных сплавах.

Повышенной устойчивостью к коррозиям обладают сплавы алюминия с менее коррозионностойких металлов (с марганцем, магнием), зато сплавы с металлами, превосходящих алюминий в этом свойстве, получаются, напротив, менее устойчивыми к коррозиям, например, Al-Cu. В целом, сплавы обладают чаще всего лучшими по сравнению с чистым алюминием механическими качествами.

Сплавы алюминия можно разделить на две группы: литейные и деформируемые (те, что обрабатываются давлением).

Помимо указанных буквенных обозначений, к ним могут добавлять буквы, обозначающие вид обработки и состояние изделия: Т — закаленное и естественно состаренное состояние, Т1 — закаленное и искусственно состаренное при 135 — 180 °С, М — обожженное состояние, Н — нагартованное, П — полунагартованное, ПЧ и Ч — указывает на наличие примесей.

Деформируемые:

  • Технический алюминий,
  • Дюралюминий с медью и магнием — Д1, Д16. Сплав Д19 становится прочнее при закалке 500 — 515 °С в воде и естественным старением порядка десяти суток. Немного изменяется его пластичность. Все виды полуфабрикатов выпускают из него. Д21 применяют для штамповок и прессованных заготовок.
  • Сплав АМЦ (алюминиевомарганцевый),
  • Высокопрочные сплавы с магнием, цинком и медью — В92, В95. Сплав В92 становится прочнее и при естественном и при искусственном старении. После закалки 400-460 °С и искусственного старения при 100 С его механические свойства его достигают максимума. Применяется для всех видов полуфабрикатов.
  • «Авиаль» с кремнием и магнием АД 31, АД35 и АД38, кроме них еще А8, но в него входит еще небольшое количество меди. Сплав ВАД23 ( AI — Сu — Мg ) среди прочих деформируемых сплавов алюминия отличается наивысшими и значениями временного сопротивления и предела текучести при нормальных и повышенных (до 160-180 °С) температурах.
  • Магниевые сплавы — Амг (с цифровым обозначением содержания магния). Сплав АМг6 больше других распространен в технике. Он прекрасно сваривается, устойчив к коррозиям, пластичен, при термообработке упрочняется.
  • Жаропрочные (ковочные) с маркировкой АК (АК2, АК 4 и т.д.)

Литейные сплавы используют для изготовления, соответственно, литых заготовок.

  • Al + Si — силумины. АЛ2, АЛ4, АЛ9, АЛ34. Отлично льются, свариваются и анодируются, режутся.
  • Al + Cu — дюрали,
  • Al + Mg (Амг).

Сплавы из алюминия отличаются удельной прочностью и простотой изготовления деталей из них, устойчивы к коррозии ( в 10-20 раз выше, чем у конструкционной стали), пластичностью даже при низких температурах, при ударе не дают искр, а кроме того имеют отличный внешний вид.

Прочность алюминиевых сплавов находится в зависимости от их марки, состояния, формы и размера заготовки и других факторов.

Алюминий подвергается лазерной резки до 16 мм., и гидроабразивной резки до 300 мм.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector