Yoga-mgn.ru

Строительный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Методы и особенности нанесения гальванического покрытия

Новости

Стадион вместо завода

Почти в каждом современном российском городе есть немало пустующих территорий, главным образом, бывших промзон, пригодных для вторичного иcпользования.

Этапы нанесения гальванического покрытия на детали: в чем особенности метода

Качественная защита металлических изделий от разрушения под воздействием коррозии – задача, с которой справляется такая технология, как гальваника. На поверхность наносят специально подобранные вещества, которые защищают металл от разрушения и одновременно с этим повышают его срок службы. Гальванизация – процесс нанесения тонкого металлического слоя. Результатом описанного процесса станет появления защитной пленки, которая защищает поверхность от окисления.

Почему метод стал популярен

Отправной точкой станет правильно составленное техническое задание. Второй аспект – заказывают услугу по гальванизации в компании с квалифицированными сотрудниками, собственной производственной базой. В этом случае нанесенное покрытие обеспечит металлической поверхности перечисленные ниже качества:

  • прочность;
  • устойчивость к воздействию негативных факторов;
  • привлекательный внешний вид;
  • устойчивость к коррозии.

Третий аспект – метод гальванизации пользуется постоянным спросом. Причина – в различных отраслях постоянно растут требования к изделиям из металла. К примеру, заказчик хочет увеличить прочностные характеристики отдельных деталей, сделать их более устойчивые к воздействию негативной среды и так далее. Помимо этого, в некоторых сферах производства деталь должна быть устойчива к резким скачкам температуры, не теряя при этом свои характеристики.

Физические характеристики процесса

Гальванизация – высокоточный процесс, о котором можно больше узнать у производителя металлообработки компании Neolaser, на странице сайта http://www.neolaser.ru/step/гальваника/. Здесь же вы можете заказать производство корпусов из металла и другие услуги. Средняя толщина наносимого слоя, в зависимости от деталей, зафиксированных в техническом задании, колеблется от 6 до 20 микрон. Многое зависит от типа обрабатываемого материала. Как только технические детали согласованы, на следующем этапе исполнитель формирует дальнейший план действий. Первый шаг – предварительная подготовка поверхности:

  • удаление следов грязи;
  • обезжиривание;
  • промывание поверхности водой;
  • обработка поверхности вещества, которые замедляют процесс окисления.

Второй шаг – непосредственное нанесение гальванического покрытия. На следующем этапе обрабатываемую поверхность окунают в гальваническую ванну. В емкости содержится специальный металлический сплав, который и покроет нужную поверхность. Важный аспект – работу проводят при высоких температурных значениях. Дополнительно аппарат поддерживает определенную величину электрического тока. Третий шаг – проведение обработки поверхности, которую покрыли металлом. Завершающий штрих – контроль качества выполненной работы.

Какие виды покрытий существуют

Высокий результат обеспечивает уровень квалификации исполнителя. Его задача – выбрать необходимый тип гальванического покрытия. Открывает список гальванизация медью. Как правило, здесь применяют медный купорос. Второе в списке – покрытие на основе золота. В этом случае получается не просто замедлить окисление, но и придать металлической поверхности более презентабельный внешний вид. Другие разновидности:

  • хром – уместен в том случае, когда деталь нужно сделать стойкой к агрессивным внешним условиям;
  • серебро – как и в случае с золотом, подходит для защиты и для придания обрабатываемой поверхности более дорого внешнего вида;
  • никель – экономичный и эффективный вариант защиты поверхности.

Гальванизация с использованием цинка снижает вероятность появления следов ржавчины, придает обрабатываемому изделию блеск. Вне зависимости от выбранного метода работа проходит по утвержденному техническому процессу. В этом случае можно быть уверенным в качественном результате.

10.6. Вневднные и безванные способы нанесения гальванических покрытий

Научно-технический прогресс, ус­пехи науки и практики в области гальванотехники нашли отражение в ремонтном производстве. В частно­сти, стали более широко использо­ваться гальванические процессы вос­становления деталей вневанными ме­тодами.

Струйные и проточные способы хромирования деталей характеризу­ются принудительной циркуляцией электролита, что обеспечивает повы­шение производительности процесса в 3,5 — 4 раза но сравнению с обыч­ным хромированием, высокую равно­мерность покрытия по всей поверхно­сти и толщину его до 1 мм на сторону, позволяет наращивать детали «в раз­мер» без последующей механической обработки, снижать насыщенность осадка и основного металла водоро­дом, существенно улучшить качество электролитических слоев. Помимо перечисленных достоинств, проточ­ное и струйное железнение, проточ­ные и струйные методы нанесения хрома, благодаря интенсивному об­новлению электролита, удалению га­зообразных продуктов электролиза из анодно-катодного пространства, а также равномерному распределению тока повышенной плотности, способ­ствуют получению мелкодисперсной структуры, осадков с повышенной твердостью, снижению в них остаточ­ных напряжений. В связи с этим усталостная прочность деталей, восста­новленных струйным и проточным хромированием по сравнению с дета­лями без покрытий, снижается толь­ко на 4 — 5 %.

При восстановлении крупногаба­ритных деталей сложной конфигура­ции (блоки цилиндров, корпуса коро­бок передач и задних мостов, коленчатые валы и др.) возникают трудно­сти. Они связаны с изоляцией мест, не подлежащих покрытию (площадь их поверхности в десятки раз превыша­ет покрываемую площадь), сложной конфигурацией подвесных уст­ройств, необходимостью иметь ванны больших размеров, быстрым загряз­нением электролитов и др.

Для восстановления таких дефек­тов деталей, как, например, восста­новление размеров отверстий под подшипники в корпусах и корпусных деталях, применяют вневанный спо­соб. Сущность вневанного способа нанесения гальванических покрытий заключается в том, что при помощи специальных прижимных приспособ­лений из восстанавливаемых поверх­ностей детали образуется электролитическая ячейка, в которую заливают электролит. По центру образовав­шейся вместимости помещается анод. Восстанавливаемая деталь и анод подключаются к соответствующим клеммам источника тока. Дан­ный способ является весьма эффек­тивным при восстановлении отвер­стий в корпусных деталях или внут­ренних поверхностей других деталей.

Для восстановления гальваниче­ским способом изношенных посадоч­ных отверстий в гнездах под подшип­ники качения картер коробки пере­дач устанавливают на стол (рис. 10.11) и создают ячейки на том отвер­стии, которое подлежит восстановле­нию. Для этого текстолитовый диск с резиновой прокладкой прижимают прижимом к внутренним поверхно­стям коробки передач и устанавлива­ют планку с эбонитовой втулкой под анод, которая крепится к картеру двумя винтами, входящими в резьбо­вые отверстия крепления крышки подшипника. Анод устанавливают по центру восстанавливаемого отвер­стия, в которое заливают электролит. После окончания процесса железнения электролит резиновой грушей от­сасывают из ячейки, извлекают анод и снимают планку. Картер переуста­навливают для восстановления про­тивоположного отверстия.

К безванным способам гальвани­ческого осаждения металлов отно­сятся: струйный, в проточном элект­ролите и злектронатиранием. Все они позволяют местно наносить покры­тия на деталь без погружения их в ванну и особенно эффективны для крупногабаритных деталей.

При струйном способе нанесения гальванических покрытий восстанав­ливаемая деталь присоединяется к отрицательному полюсу источника тока. На нее через специальную насадку, присоединенную к положи­тельному полюсу — аноду, беспре­рывно подается струя электролита, который в течение всего процесса за­полняет сохраняемый постоянным промежуток между деталью и ано­дом. Постоянный ток, пропускаемый от генератора через анод и деталь, замыкается в единую цепь электро­литом (рис. 10.12). Для равномерного покрытия всей восстанавливаемой поверхности деталь или насадку не бходимо в период нанесения покры­тия вращать с частотой вращения 2— 6мин -1 .

Преимуществами струйного спосо­ба являются:

возможность восстанавливать крупногабаритные детали с исполь­зованием постоянного тока малой мощности;

малые габариты установки и возможность ее изготовления в перенос­ном исполнении, что особенно ценно при восстановлении крупных дета­лей;

эффективная возможность контро­лировать процесс осаждения во вре­мя работы;

относительная легкость нанесения покрытия;

увеличение выхода по току и рас­ширение диапазона получения бле­стящих осадков;

отсутствие надобности в большом количестве электролита.

Метод струйного нанесения покры­тий по своей технологичности дает возможность ввести операцию нане­сения покрытия в единую линию тех­нологического процесса с использо­ванием электролитов, применяемых в гальванике.

Проточный способ нанесения галь­ванических покрытий заключается в том, что в зоне восстанавливаемой по­верхности создается местная, ванна, через которую насосом прокачивают электролит. Аноды располагают внутри ванны (рис. 10.13).

Наибольшая производительность при проточном осаждении металлов достигается тогда, когда создается турбулентный режим течения элект­ролита, который достигается при ско­рости протекания электролита более 1 м/с. В этом случае при определен­ных условиях плотность тока может быть увеличена в 10 раз и более (при железнении до 300 — 500 А/дм 2 ). Од­нако при турбулентном режиме воз­никают серьезные трудности (необхо­димы тщательная герметизация ячейки, специальный насос и т. д.). Поэтому при железнении внутренних поверхностей деталей в ваннах (например, отверстий шатунов) для со­здания турбулентного режима вме­сто протекания электролита его ин­тенсивно перемешивают перфориро­ванной пластмассовой втулкой. Она расположена между анодом и де­талью и вращается с окружной ско­ростью 1,2 — 1,5 м/с. Катодная плот­ность тока достигает 200 А/дм 2 , а ско­рость осаждения покрытий —2 мм/ч. Сущность электролитического на­тирания заключается в электроосаждении металла из микрованны, обра­зуемой в зоне контакта покрываемой детали с анодом, обернутым адсорби­рующим материалом, пропитанным электролитом. В качестве материала используются войлок, фетр, сукно и др. Конструктивное исполнение анодных головок представлено на рис. 10.14.

Читать еще:  Канатные стропы (чалки). Собственное ПРОИЗВОДСТВО

Наиболее удачными являются кон­струкции анодных головок, приведен­ные на рис. 10.14, виг, поскольку электролиз с анодными головками, показанными на позициях рис. 10.14, о и б, протекает нестабильно, адсор­бирующая ткань заполняется шла­мом, который проникает в покрытие. Ткань изнашивается быстрее, что ча­сто приводит к замыканию электри­ческой цепи и нарушению процесса.

Процесс с анодными головками, показанный на рис. 10.14, в, протека­ет при скорости потока электролита 0,5— 1,5 м/с с одновременным вра­щением анодной головки с частотой 60— 100 мин» 1 в зависимости от ее диаметра и межэлектродном зазоре 1,1 — З мм. Зазор уменьшается по ме­ре увеличения толщины покрытия.

Минимальное его значение ограничи­вается толщиной натирающего там­пона.

Электролиз с анодными головка­ми, показанный на рис. 10.14, г, при восстановлении опор коренных под­шипников блока цилиндров ЗИЛ-130 протекает при частоте вращения ано­да 0,7 с

‘, скорости потока электро­лита — 1,2 — 2 мм/с и его расходе — 8,4 — 13,4 м 3 /с. Тампон при этом вы­полнен в виде круглой щетки из кап­роновых нитей, что обеспечивает ме­ханическую активацию поверхности, способствует уменьшению дендрито-образования и уплотнению структу­ры осаждаемого металла.

Гальваническое покрытие

Содержание статьи
  • Метод покрытия
  • Процесс покрытия
  • Виды покрытий:
    • Покрытие медью
    • Покрытие золотом
    • Покрытие хромом
    • Покрытие серебром
    • Покрытие никелем
    • Покрытие цинком
    • Покрытие оловом
  • Обозначение гальванических покрытий

В современном мире большую популярность получила процедура нанесения на металлические материалы различных веществ, которые предотвращают образование на них коррозийного налета. Гальваника служит для защиты металлов от образования на них ржавчины и для продления срока службы того или иного изделия.

Метод гальванического покрытия

В современном мире не редко при обработке металлических поверхностей используется гальванический метод. Гальваническое покрытие материалов заключается в нанесении, на их поверхность тонкого металлического слоя. При этом образуется пленка небольшой толщины, которая противостоит окислению отдельных металлов. Гальванический метод используется для придания изделию или материалу:

  • прочность,
  • износостойкость,
  • устойчивость к появлению коррозии,
  • привлекательные внешние качества.

В современном мире данный метод обработки металлических покрытий приобрел большую популярность, потому что к оборудованию и другим изделиям предъявляется большое количество требований. Требуется постоянно увеличивать прочность отдельных деталей и повышать их устойчивость к влиянию агрессивной внешней среды. Металлические детали на современном производстве должны обладать способностью выдерживать температурные перепады. Именно этим обусловлено то, что многие отрасли промышленности широко используют гальванический метод обработки металлических изделий.

Важно: Толщина гальванического покрытия является достаточно тонкой при методе гальваники. Она составляет от 6 до 20 микрон. Она зависит от материалов, которые используются для гальванического процесса.

Гальваническеи покрытия за счет своей прочности получили широкое распространение в таких промышленных отраслях, как:

  • авиастроение,
  • машиностроение,
  • строительная промышленность,
  • радиотехническая промышленность,
  • электронная промышленность.

Процесс гальванического покрытия

Впервые гальваническое покрытие появилось в 1836и году. Оно было открыто русским физиком Якоби. Он провел ряд экспериментов и выяснил, что на катоде после пропускания металлов через водные и соляные растворы под воздействием электрического тока оседают положительно заряженные ионы. Во время прохождения через солевые растворы при помощи электрического тока происходит распад металлов на ионы, которые обладают разными зарядами. Те, которые имеют отрицательный заряд, оседают на аноде. Те, которые имеют положительный заряд, оседают на катоде. Его роль при гальванике играют металлы, которые необходимо защитить от образования коррозии.

Процесс гальванического покрытия с физической точки зрения является достаточно простым.

Он состоит из трех основных этапов:

  • Подготовка поверхности. На данном этапе необходимо тщательным образом подготовить металлическую поверхность к проведению процедуры гальваники. Для этого сначала нужно убрать с нее все загрязнения и провести процесс обезжиривания. Затем необходимо промыть поверхность водой и обработать средствами для остановки процесс окисления.
  • Нанесение гальванического покрытия. После всех подготовительных процедур наступает процесс погружения металлических деталей в гальванические ванны. В них содержится сплав металла, которым будет покрываться поверхность. Вся процедура проводится при высоких температурах. При этом величина электрического тока поддерживается на определенном уровне.
  • Обработка покрытого металлом материала. На завершающем этапе проводятся тесты по определению уровня сцепления металлического сплава с поверхностью.

Виды гальванических покрытий

В современном мире для гальванического покрытия могут быть использованы различные металлы. Они дают тонкую пленку, которая обладает надежной защитой.

Сегодня выделяют:

Гальваническое покрытие медью

Данная процедура получила название медирование. Благодаря меди можно создать на поверхности самых разных металлов прочную защитную пленку. Чаще всего для проведения данной процедуры использует медный купорос.

Гальваническое покрытие золотом

В настоящее время большое распространение получила процедура золочения. Она заключается в том, чтобы раствором покрыть металлическую поверхность придания ей боле дорого внешнего вида и для защиты от появления коррозии.

Гальваническое покрытие хромом

Обработка металлов хромом делает их более прочными и устойчивыми к условиям, которые предлагает агрессивная внешняя среда. Благодаря данному элементу на поверхности образуется тонкая пленка, которая обладает защитными и эстетическими качествами.

Гальваническое покрытие серебром

Нередко в промышленных условиях применяется серебрение. При этом на поверхности металлов появляется серебристая пленка, которая придает металлам немалое количество полезных характеристики. К тому же покрытые серебром изделия всегда выглядят дорого.

Гальваническое покрытие никелем

Покрытие данным элементом обладает экономичностью. Использование данного метода обработки металлов является оптимальным для придания металлическому материалу устойчивости к внешним воздействиям окружающей среды.

Гальваническое покрытие цинком

Данная процедура получила названием цинкование. Благодаря ней на поверхности металлов образуется тонкая пленка цинка, которая предотвращает образование ржавчины. К тому же такое покрытие придает блеск изделиям.

Гальваническое покрытие оловом

Олово применяется для нанесения на такие металлы, как: алюминий, цинк, сталь и медь. Оно придает им прочность и твердость.

Гальванические покрытия ГОСТ

Таблица. Способы обозначений покрытий определены ГОСТ 9.306-85
Вид покрытияОбозначение покрытия
По ГОСТ 9.306-85цифровое
Цинковое, хроматированноеЦ.хр01
Кадмиевое, хроматированноеКд.хр.02
Многослойное: медь-никельМ-Н03
Многослойное: медь-никель-хромМ-Н-Х04
Окисное, пропитанное масломОкс. прм.05
Фосфатное, пропитанное масломФос. прм06
ОловянноеО07
МедноеМ08
ЦинковоеЦ09
СеребряноеСр12
НикелевоеН13
Статьи по теме

Антикоррозионные средства

Антикоррозионные пигменты классифицируются на: цинковые крона, алюминий три-полифосфаты и слюдянистую окись железа.

Защита трубопроводов от коррозии

Сегодня без разных видов трубопроводов невозможно представить себе жизнью Они находятся практически в каждом населенном пункте и обеспечивают коммуникации. Производств труб для прокладки под землей осуществляется из металлов самых разных типов.

Гальванические ванны

На современных промышленных объектах не редко осуществляется обработка металлов и металлических изделий для защиты их от образования коррозии. Данную процедуру невозможно осуществить без специализированного оборудования.

Процесс коррозии

В современном мире из металлов самых разных видов производится большое количество продукции. Металлические материалы присутствуют в разных отраслях промышленности в виде станков и машин, инструментов.

Ингибитор коррозии

Ингибитор не является каким-то конкретным веществом. Так называют целуют группу веществ, которые направлены на остановку или задержку протеканий каких-либо физических или физико-химических процессов.

Влияние гальванических покрытий на свойства стали. Часть1.

Гальваническое покрытие оказывает значительное влияние на физико-механические свойства основного металла, что вызвано наводораживанием стали и физико-механическими свойствами самого покрытия.

При выборе гальванического покрытия конструктору совместно с технологом необходимо учитывать особенности технологии обработки поверхности стали и способы нанесения гальванических покрытий (см. «Первые шаги в гальванике. Часть1»).

Наводораживание стали способствует уменьшению ее пластичности, ухудшению характеристик технологических проб на перегиб и скручивание. В результате интенсивного наводораживания в ряде случаев изменяется характер разрушения металла (происходит переход от вязкого к хрупкому).

Растворимость водорода и его влияние на механические свойства стали в значительной степени зависят от структуры основы. В процессе нанесения гальванических покрытий на детали из высокопрочных сталей, имеющих большие внутренние напряжения, могут возникнуть трещины. В этом случае никакое последующее обезводораживание не может привести к восстановлению механических свойств стали.

Наводораживание стали при травлении.

Степень наводораживания стали обычно оценивают по изменению пластичности стали при растяжении, характеристик технологических проб на перегиб и скручивание. С увеличением времени травления пластичность уменьшается, что свидетельствует об увеличении степени наводораживания стали.

На степень наводораживания стали большое влияние оказывают концентрация и природа кислоты: наводораживание при травлении в растворе серной кислоты больше, чем в соляной( см. «Травление поверхности.Часть1»), с увеличением концентрации серной кислоты наводораживание увеличивается, а в соляной кислоте с повышением концентрации оно уменьшается.

Наличие ингибиторов по-разному влияют на степень наводораживания стали: диэтиламин является слабым ингибитором коррозии, но в то же время тормозит наводораживание стали при травлении в серной кислоте. Тиомочевина в растворе серной кислоты, наоборот, сравнительно эффективный ингибитор коррозии, однако усиливащий наводораживание стали.

Наводораживание при нанесении гальванических покрытий.

В процессе нанесения гальванических покрытий особенно сильное наводораживание стали происходит в цианистых электролитах. Гораздо меньше наводораживание наблюдается в кислых электролитах, однако достаточное для ухудшения механических свойств высокопрочных сталей.

На степень наводораживания определяющее влияние оказывают состав электролита, плотность тока, природа и структура покрытий.

При оценке изменения механических свойств стали необходимо учитывать возможность влияния самого покрытия. В ряде случаев влияние покрытия может оказаться более сильным, чем водорода, продиффундировавшего в сталь. Известно, например, что с увеличением времени хромирования наводораживание стали увеличивается, а пластичность при осевом растяжении уменьшается. Однако, если испытания проводить на изгиб, то с увеличением толщины хромового покрытия относительная хрупкость не увеличивается, а уменьшается. Поэтому метод определения охрупчивания стали на изгиб можно применять только в случае мягких эластичных покрытий, тогда как для твердых, например, хромовых, этот метод может дать ошибочный результат.

На степень наводораживания основное влияние оказывает концентрация адсорбированных атомов водорода, поэтому время до растрескивания напряженной высокопрочной стали в процессе нанесения гальванических покрытий является важным параметром при определении степени наводораживания основного металла.

Таким образом, для установления степени наводораживания стали в процессе нанесения гальванических покрытий целесообразно определять: пластичность (относительное поперечное сужение и удлинение); время до разрушения напряженных плоских образцов из высокопрочных сталей в процессе нанесения гальванических покрытий; пластичность при изгибе.

Отчего зависит степень наводораживания при различных гальванических процессах – читайте в следующих публикациях.

Технология гальванического цинкования

Гальваническое цинкование металлоконструкций является одним из самых востребованных видов цинкования, благодаря которому изделия приобретают высокие защитные и декоративные свойства.

В отличие от горячего метода обработки, данная технология является более простой и дешевой.

Однако она имеет определенные ограничения по использованию, что обусловлено сравнительно тонким слоем защитного покрытия (не превышает 40 мкм).

Технология гальваники предусматривает осаждение цинка из состава электролита на металлоконструкцию, которая в свою очередь подключена к сети питания через отрицательный полюс.

Чтобы увеличить уровень механической и коррозийной устойчивости, а также для повышения декоративных качеств деталей, цинковое покрытие дополнительно подвергают хроматированию, кадмированию или обработке фосфатными составами.

На производстве гальваническая обработка металла проводится в строгой последовательности

  1. Очистка поверхности деталей от лакокрасочных и смазочных материалов, ржавчины и окалины (процедура проводится с использованием обезжиривающих и щелочных смесей).
  2. Промывка чистой водой в специальной проточной ванне.
  3. Электролитическое обезжиривание и последующая промывка.
  4. Травление в составе, который включает воду и соляную кислоту. Процедура удаляет остатки ржавчины и окалины, исключая растворение или деформацию основного металла, а также декапирует поверхности перед обработкой.
  5. Промывка, непосредственно гальваническая оцинковка и повторная промывка.
  6. Для устранения с поверхности окисной пленки применяться осветление металла в растворе, состоящем из воды и азотной кислоты.
  7. Промывка, фосфатирование (при необходимости) с последующей промывкой.
  8. Может быть проведена пассивация электролитическим хроматированием или путем хроматированного распыления.
  9. Сушка детали.

В зависимости от особенностей технологии обработки и типа продукции гальваническая обработка металла может включать дополнительные манипуляции.

Если обрабатывают полосу, то цинкование начинают с разматывания материала, а далее выполняют сварку концов. На заключительном этапе полосу обрабатывают маслом и сматывают.

Дефекты при гальваническом цинковании

Среди причин, которые значительно влияют на уровень качества обрабатываемых деталей, выделяют следующие:

  • Низкое качество подготовки металлоконструкций;
  • Отклонение от соблюдения рецептуры электролита;
  • Нарушения характеристик и последовательности этапов гальванической обработки.

Также качество готовой продукции зависит от конфигурации, особенностей расположения и состояния плоскостей ведущих и дополнительных анодов, а также пространственного расположения изделий в электролите.

Вследствие этого на деталях могут присутствовать такие дефекты, как:

  • Питтинг – на металле образуются углубленные полосы или незначительные точечные каверны. Такие недостатки появляются, как правило, в результате того, что в электролите присутствуют гидрокисные или органические примеси, а также при низкой интенсивности перемешивания или его полном отсутствии.
  • Низкий уровень адгезии – плохое схватывание цинкового слоя или его отслаивание может наблюдаться при нарушении процесса очистки, травления или обезжиривания детали. Также такое наблюдается при засорении электролита различными органическими соединениями, включая соли разных других металлов.
  • Разнотипность внешнего вида – вызывает несоблюдение рецептуры в части пропорции используемых компонентов электролита при одновременном накоплении в гальванической ванне определенного объема солей железа. Также причиной данного дефекта может выступать недостаточное перемешивание компонентов и пониженная температура, которая не отвечает норме.
  • Повышенная шероховатость – свидетельствует о присутствии в гальванической смеси всевозможных механических примесей, сульфата цинка и гидроксидов в повышенном объеме. Также это возникает в результате недостаточного количества анионов цинка в электролите и при избыточной плотности тока.
  • Хрупкость цинкового покрытия – является следствием превышенной плотности тока в катодном пространстве или присутствием в электролите органических примесей в большом объеме.
  • Темный (преимущественно коричневый) цвет – вызывает наличие в гальванической ванне различных органических загрязнений. Такой эффект также может вызвать существенно снижение плотности тока возле катода и повышение температуры электролитической смеси.

Сравнительные характеристики горячего и гальванического цинкования

Сегодня применяется два вида цинкования металлоизделий – это горячее оцинкование путем окунания деталей в расплав цинка и гальванический способ обработки цинком, который предполагает воздействие на детали электрического тока. В свою очередь гальваническая технология цинкования производится двумя технологическими методами.

В первом случае обработка выполняется в специальных установках (барабанах), которые вращаются с определенной скоростью. Метод получил распространение для обработки деталей с резьбой и без резьбы.

Во втором случае металлоконструкции подвешивают при помощи медной проволоки, а затем опускают в смесь с электролитом. Широко применяется для оцинкования габаритных конструкций. В свою очередь метод горячего оцинкования также выполняется подвесным способом, используется для крупногабаритных конструкций.

Перед выбором конкретного способа обработки деталей нужно учитывать следующие факторы:

  1. Эстетические и декоративные требования к защитному покрытию.
  2. Уровень влияния агрессивности факторов внешней среды, в которой планируется использовать конструкцию.
  3. Конструктивные особенности деталей (наличие отверстий, пр.).
  4. Насколько метод обработки отвечает технологическим нормам процессов оцинкования.

В случае, когда конструкции предполагается эксплуатировать на улице и в других агрессивных условиях, главным требованием к покрытию выступает высокая антикоррозийная стойкость. Такие изделия следует обрабатывать цинком по технологии горячего оцинкования, которая позволяет наносить покрытие толщиной от 60 микрометров.

В данном случае в течение года цинковое покрытие разрушается не больше, чем на 10 микрометров.

Однако метод горячей обработки может применяться только в отношении конструкций, в которых имеются отверстия определенного диаметра. Также следует учитывать, что на деталях, обработанных таким способом, могут оставаться наплывы, подтеки и капли.

Поэтому декоративные качества покрытия в данном случае достаточно низкие. К тому же тонкие металлоизделия могут деформироваться вследствие горячей обработки, что обусловлено особенностями технологии (цинк наносят при температуре 450°C).

Гальваническая оцинковка металла проводится при комнатной температуре, поэтому данный метод иногда называют «методом холодного цинкования», при котором металл не подвергается деформации.

Данный способ обработки отлично подходит для деталей, в которых присутствуют резьбовые соединения.

Сфера применения гальванического цинкования

Данный способ широко применяется на изделиях, изготовленных из углеродистых сталей и разных видов чугуна. Основной сортамент гальваники представлен разным инструментом, деталями машин и оборудования, всевозможными опорами и крепежными элементами, включая тонколистовой холоднокатаный металлопрокат.

Наряду с защитными свойствами, гальваническое цинкование также наделяет металл декоративными качествами. Это обусловлено равномерностью распределения покрытия по поверхности и точным повторением покрытия конфигурации детали.

Толщина цинкового покрытия составляет 6 – 9 микрометров, но при этом конструкции подвергаются пассивации в специальном хроматном растворе. Благодаря пассивации можно получить высокий эстетический эффект.

Процедура позволяет придать конструкциям такие цветовые решения, как радуга (золотистый цвет, который отлично переливается на солнце) и голубизна (цинк белого цвета приобретает голубой отлив).

Методика гальваники предполагает лишь внешнее покрытие деталей, поскольку нанести покрытие в труднодоступных местах невозможно вследствие отсутствия электропроводимости.

Металлоконструкции, оцинковка которых проводилась гальваническим способом, широко применяются в умеренной среде. Таким образом, такие конструкции могут использоваться на улице лишь периодически, при этом они не должны иметь прямой контакт с влагой.

Виды электролит

Применение данной технологии предусматривает соблюдение состава электролита и температурного режима. Это обусловлено тем, что эти параметры при требуемой плотности тока оказывают прямое воздействие на структуру наносимого покрытия и скорость осаждения цинка.

Чтобы получить желаемый декоративный эффект, в электролит добавляют окрашивающие и блескообразующие компоненты.

Метод гальванического оцинкования предполагает использование нескольких групп электролитов, которые отличаются составом рецептуры:

  • Слабокислые и кислые – наиболее простые составы, при создании которых применяются сульфаты, хлориды, борфториды и их смеси;
  • Цинкатные и цианидные – это щелочные вещества, в составе которых присутствует цианид натрия и цинкат натрия, которые растворяют в едком натре;
  • Аммиакатные – нейтральные и щелочные составы, полученные посредством растворения оксида цинка в смеси хлорида или сульфата аммония.

Также технологи используют электролиты, создаваемые на основе аминосоединений. Однако такие растворы применяются крайне редко.

Вывод

Цинковый слой, нанесенный методом горячего оцинкования, способен сохранять эксплуатационные свойства на протяжении до 120 лет при использовании в обычных условиях. Это обусловлено толщиной слоя цинка, который составляет до 200 мкм.

В результате металл приобретает высокие защитные свойства и отличается стойкостью к механическим воздействиям. Более того, покрытие способно самостоятельно восстанавливаться при образовании трещин, что обусловлено особенным составом цинкового раствора.

В свою очередь толщина слой цинка при гальванике составляет не более 15 мкм. Поэтому срок службы изделий с такой толщиной покрытия в агрессивных условиях способно прослужить не более 1 года. Преимуществами данной методики выступают доступная стоимость, ровность и равномерность покрытия.

Способы нанесения гальванических покрытий

Гальваника — это технологический процесс получения металлических покрытий путем осаждения требуемого элемента на поверхность детали из раствора солей.

Гальванические покрытия могут быть получены химическим и электрохимическим способом. Электрохимическим называется способ получения металлического неорганического покрытия в электролите под действием электрического тока от внешнего источника. Химическим называется способ получения металлического неорганического покрытия в растворе солей без наложения на него электрического тока.

Электрохимический процесс

Электрохимический процесс, протекающий на электродах при прохождении через электролит электрического тока, называется электролизом. Устройства, в которых за счет внешней электрической энергии совершаются химические превращения веществ, называются электролизерами или электролитическими (гальваническими) ваннами 1 (рис. 5.1). При гальваническом покрытии деталей в качестве электролита 2 применяют обычно раствор соли осаждаемого металла (в электролит вводят также некоторые компоненты, улучшающие свойства покрытий и увеличивающие электрическую проводимость электролита и т.д.). Анодами 3 служат пластины из осаждаемого металла, а катодами 4 — предварительно очищенные и подготовленные детали, подлежащие покрытию.

Процесс электролиза состоит из следующих этапов:

  • получение в электролите ионов осаждаемого металла;
  • перенос полученных ионов к детали-катоду;
  • переход ионов металла в атомарное состояние;
  • осаждение атомов на поверхности детали;
  • формирование кристаллической решетки.

Рис. 5.1. Схема стационарной гальванической ванны:
1 — ванна; 2 — электролит; 3 — аноды; 4 — деталь.

Электролиз может проводиться с применением растворимых и нерастворимых анодов. В случае проведения электролиза с растворимым анодом, изготовленным из осаждаемого на поверхности детали металла, он постепенно растворяется в электролите, образуя новые ионы металла взамен выделившихся на катоде, тем самым поддерживая требуемую концентрацию металла в растворе. В тех случаях, когда происходит нанесение покрытия на внутреннюю поверхность цилиндрических деталей малого диаметра и большой длины, допускается применение нерастворимых анодов. Нерастворимые аноды изготавливаются из металла или сплава, который в данном электролите не растворяется (чаще всего используется свинец), или из графита. При осаждении металлов из цианистых электролитов в качестве нерастворимых анодов используют стальные аноды, а в кислых — освинцованную проволоку. На нерастворимых анодах при электролизе обычно выделяется кислород.

Выбор электролитов

Режим электролиза при заданном составе электролита характеризуется тремя основными показателями:

  • кислотностью электролита, выраженной в граммах на литр, или в единицах рН;
  • температурой электролита;
  • катодной плотностью тока в амперах на квадратный дециметр.

В зависимости от кислотности электролиты можно разделить на две группы: щелочные и кислые электролиты. По составу входящих в них соединений электролиты бывают простые и сложные, в состав которых входят комплексные соединения.

Качество гальванических покрытий определяется их внешним видом, прочностью сцепления с основным металлом, толщиной и пористостью. Допускается наличие рисок, царапин, отдельных шероховатостей и несквозных пор, легко устраняемых при последующем полировании. Допустимыми дефектами являются также высохшие подтеки воды и разные оттенки.

Виды ванн

В зависимости от размеров детали конструкция гальванической ванны существенно различается. Нанесение гальванических покрытий может проводиться:

  • в стационарных емкостях с вращением детали и без него;
  • в струйных ваннах;
  • в переносных ваннах;
  • электролизом во внутренних полостях деталей без использования гальванической ванны;
  • в барабанах и колоколах.

Рис. 5.2. Установка для покрытия наружной поверхности цилиндрических деталей:
1 — катодная шина со скользящим контактом; 2 — покрываемая деталь; 3 — цилиндрический корпус гальванической ванны; 4 — цилиндрический анод; 5 — подпятник из пластмассы; 6 — станина; 7 — электродвигатель с редуктором.

Процесс получения гальванических покрытий в стационарных емкостях представлен выше (см. рис. 5.1). Вращение детали вокруг своей оси в течение всего времени осаждения позволяет формировать более ровные по толщине гальванические покрытия. Вращение детали также применяют для покрытия наружной поверхности цилиндрических деталей. Как видно из рис. 5.2, деталь помещена вертикально в центре цилиндрического анода, установленного также в цилиндрической стационарной ванне, и получает вращение от электродвигателя с редуктором. Для питания током к детали подведен скользящий контакт. Вращение детали позволяет применять высокие плотности тока и поэтому покрытия получаются гладкими и равномерными.

Использование для нанесения покрытий струйных ванн повышает производительность процесса. Постоянная смена электролита, контактирующего с поверхностью детали, предотвращает его обеднение ионами осаждаемого металла. Возможность регулировки размеров ванны для струйного нанесения позволяет создавать гальванические покрытия на отдельных участках длинномерных деталей (рис. 5.3).

Применение переносных ванн целесообразно для создания местных покрытий на крупногабаритных деталях. В переносных ваннах деталь не погружают в электролит целиком, а наоборот, пристраивают ванну к тому участку детали, на котором необходимо сформировать гальваническое покрытие (рис. 5.4).

Рис. 5.3. Схема установки для струйного нанесения покрытий:
1 — анод; 2 — верхняя часть гальванической ванны; 3 — деталь; 4 — раздвижная кассета; 5 — нижняя часть гальванической ванны; 6 — электролит; 7 — подогреватель; 8 — насос.

Рис. 5.4. Схема установки переносной ванны:
1 — деталь; 2 — анод; 3 — электролит; 4 — гальваническая ванна; 5 — клеевой слой.

Создание гальванических покрытий на внутренних поверхностях в деталях, имеющих закрытые внутренние полости, может осуществляться без использования емкостей для электролита. Роль такой емкости выполняет сама деталь (рис. 5.5).

Рис. 5.5. Монтаж внутренних электродов для создания покрытий на внутренних поверхностях трубчатых деталей:
1 — анод; 2 — центрирующая втулка; 3 — деталь.

В центре наращиваемой детали помещают свинцовый анод, а деталь служит катодом. При монтаже внутренних анодов в трубчатых деталях диаметр анодов должен составлять от 0,3 до 0,5 внутреннего диаметра труб. Внутренние аноды должны быть строго центрированы по отношению к стенкам трубы, что достигается установкой центрирующих втулок из пластмассы. Если диаметр анода велик, то его изготовляют полым внутри, а для снижения его массы и увеличения активной поверхности сверлят ряд отверстий в стенках. Полые трубчатые аноды особенно удобны, когда электролит во время процесса необходимо нагревать или охлаждать. Часто через полые трубчатые аноды производят прокачивание электролита для улучшения или ускорения процесса. При большой длине труб или при использовании гибких проволочных анодов на них через равные промежутки длины надевают центрирующие изоляторы в форме равностороннего плоского треугольника с отверстием в центре для пропускания анода. В качестве материала для изолятора применяют листовой целлулоид, винипласт и прочие химические стойкие пластмассы.

При этом деталь устанавливают на резиновый лист рядом с емкостью для удаления в процессе нанесения покрытий промывающей и охлаждающей жидкости. Резиновый лист покрывают целлулоидом, так как резина может растворяться в горячем электролите.

Для массового осаждения покрытий на крепежных или мелких деталей используют ванны с вращающимися барабанами. Барабан изготовляют шестигранного сечения, из листового железа, с задвижной дверцей для загрузки и выгрузки деталей и с шестерней для вращения, закрепленной по оси на одном из торцов. Диаметр с барабана обычно принимают равным 500-600 мм при длине 600-800 мм. Частота вращения не выше 15-5 об/ч. Загрузка барабана составляет 40-50 кг деталей.

Возможно Вас так же заинтересуют следующие статьи:

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector