Yoga-mgn.ru

Строительный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

График термической обработки Свойства стали 40 х

График термической обработки Свойства стали 40 х

Конкурентное присутствие производителей метизов на внутреннем рынке может обеспечиваться только качественным суммарным результатом всех технологических операций, формирующих качество и себестоимость метизов. К метизным изделиям относят, в первую очередь, проволоку, проволочные изделия, крепеж и пружины. Широкий сортамент и большие разнообразия свойств метизов продиктовано спецификой их использования в различных областях машиностроения. Характеристики метизов и их эксплутационные показатели определяются на всех этапах металлургического передела. Они зависят от выбора шихтовых материалов для выплавки металла и заканчиваются технологией подготовки калиброванного проката и высадкой готовых изделий. На технологию изготовления и свойства метизов сильно влияет содержание всех элементов (даже в пределах одной марки стали). Свойства стали (химический состав, механические свойства, макро и микроструктура, наличие неметаллических включений и др.) оказывают большое влияние на технологичность переработки калиброванного проката и эксплутационные показатели крепежа, полученного методом холодной высадки.

При разработке современных конкурентноспособных технологий получения высокопрочных крепежных изделий (класса прочности 8.8 и более) необходимо использовать дополнительные резервы повышения качества на всех переделах:

  • совершенствовать технологию выплавки и внепечной обработки стали;
  • разрабатывать ресурсосберегающие технологии подготовки металла к высадке;
  • применять прогрессивные смазочные материалы и способы подготовки поверхности материала перед высадкой;
  • оптимизировать технологию высадки.

Анализ литературных и производственных данных позволил выделить основные параметры, влияющие на качество калиброванного проката под холодную высадку: способность выдерживать осадку до 1/3 первоначальной высоты образца; удовлетворительная микроструктура; относительное удлинение; временное сопротивление разрыву; сужение; твердость проката.

Горячекатаный прокат перед холодной высадкой подвергается калиброванию с различными степенями обжатия. Возможная степень обжатия проката зависит от пластических свойств стали, определяемых микроструктурой. Наилучшие свойства достигаются при однородной мелкоглобулярной микроструктуре с равномерным распределением цементита в феррите. Чтобы получить оптимальные свойства, нужно точно установить степень обжатия и режим термической обработки проката. В качестве промежуточной термической обработки применяют отжиг. После отжига в микроструктуре не должно обнаруживаться крупные выделения свободного феррита, которые могут получиться при нарушении температурного нагрева или охлаждения проката. При наличии структурно свободного феррита прокат не способен к большим обжатиям из-за быстрого наклепа ферритных участков.

Нами проведены исследования механических свойств и твердости калиброванного проката различных марок сталей, изготовленных из горячекатаного проката методом калибрования по трем различным технологиям.

При этом изучалось:

1) влияние степени обжатия после изотермической обработки различных марок сталей на механические свойства калиброванного проката, предназначенного для изготовления метизных изделий методом холодной высадки;

2) влияние изотермической обработки на механические свойства калиброванного проката, подвергающегося окончательному калиброванию с различными степенями обжатия;

3) влияние изотермической обработки и степени обжатия калиброванного проката для дальнейшего изготовления болтов, соответствующих классу прочности 8.8 и выше, без их дальнейшей закалки.

В работе исследовались три технологических варианта изготовления болтов из стали 35Х, 38ХА и 40Х для холодной высадки стержневых изделий. Для исследования был отобран горячекатаный прокат следующих марок сталей и размеров:

  1. Сталь 35Х — диаметр 13,0 мм
  2. Сталь 38ХА — диаметр 11,0 мм
  3. Сталь 40Х — диаметр 11,0 мм
  4. Сталь 40Х — диаметр 13,0 мм

Химический состав сталей 35Х, 38ХА, 40Х соответствовал ГОСТ 10702-78 «Сталь качественная конструкционная углеродистая и легированная для холодного выдавливания и высадки». Механические свойства горячекатаного проката сталей 35Х, 38ХА и 40Х соответствовали ГОСТ 10702-78 без термической обработки.

В соответствии с требованиями ГОСТ 10702-78 на калиброванном прокате под холодную высадку проверяли микроструктуру и механические свойства (δв, б, Ψ).

Подготовка калиброванного проката сталей 35Х, 38ХА и 40Х производилась из горячекатаного проката по трем технологическим вариантам:

1. Отжиг горячекатаного проката (камерная газовая печь с выдвижным подом) → калибрование со степенью обжатия 20-26,5% → высадка болтов → термообработка готовых изделий (закалка + высокий отпуск).

2. Отжиг горячекатаного проката (камерная газовая печь с выдвижным подом) → предварительное калибрование со степенью обжатия 15-22% → термообработка калиброванного проката → окончательное калибрование со степенью обжатия 5% → высадка болтов.

а) Отжиг горячекатаного проката по режиму:

температура нагрева 780ºС, выдержка в печи в течении 3-х часов, охлаждение с печью до температуры 700ºС, выдержка 3 часа, охлаждение с печью.

б) Предварительное калибрование на промежуточные размеры:

сталь 35Х с диаметра 13,0 мм на диаметр 11,8 мм (степень обжатия q =18%)

сталь 38ХА с диаметра 11,0 мм на диаметр 9,7 мм (степень обжатия q =22%)

сталь 40Х с диаметра 11,0 мм на диаметр 9,9 мм (степень обжатия q =19%)

сталь 40Х с диаметра 13,0 мм на диаметр 11,95 мм (степень обжатия q =15%)

в) Термообработка калиброванного проката по режиму:

температура нагрева в соляной ванне 880ºС, охлаждение в селитре при температуре 400ºС с выдержкой в течении 5-ти минут, охлаждении на воздухе 2 минуты, окончательное охлаждение в воде.

г) калибрование на окончательный размер со степенью обжатия 5%

сталь 35Х с диаметра 11,8 мм на диаметр 11,5 мм (степень обжатия q =5%)

сталь 38ХА с диаметра 9,7 мм на диаметр 9,45 мм (степень обжатия q =5%)

сталь 40Х с диаметра 9,9 мм на диаметр 9,7 мм (степень обжатия q =5%)

сталь 40Х с диаметра 11,95 мм на диаметр 11,65 мм (степень обжатия q =5%)

д) Высадка болтов

сталь 35Х — диаметр 11,5 мм

сталь 38ХА — диаметр 9,45 мм

сталь 40Х — диаметр 9,7 мм

сталь 40Х — диаметр 11,65 мм

3. Термообработка горячекатаного проката → калибрование со степенью обжатия 20-26,5% → высадка болтов

а) Термообработка горячекатаного проката по режиму:

температура нагрева в соляной ванне 880ºС, охлаждение селитре при температуре 400ºС с выдержкой в течении 3-х минут, окончательное охлаждение в воде.

б) Окончательная калибровка на размеры:

сталь 35Х с диаметра 13,0 мм на диаметр 11,5 мм (степень обжатия q =22%)

сталь 38ХА с диаметра 11,0 мм на диаметр 9,45 мм (степень обжатия q =26,5%)

сталь 40Х с диаметра 11,0 мм на диаметр 9,7 мм (степень обжатия q =22%)

сталь 40Х с диаметра 13,0 мм на диаметр 11,65 мм (степень обжатия q =20%)

в) Высадка болтов:

сталь 35Х — диаметр 11,5 мм

сталь 38ХА — диаметр 9,45 мм

сталь 40Х — диаметр 9,7 мм

сталь 40Х — диаметр 11,65 мм

Микроструктура в горячекатаном состоянии — перлит сорбитообразный и тонкопластинчатый + феррит в виде разорванной сетки по границам перлитных зерен. Твердость 90-96 HRB. Микроструктура калиброванного проката — сорбит. Твердость 22-26 HRC.

Установлено, что калиброванный прокат, подготовленный по варианту 2, имеет значение временного сопротивления разрыву несколько выше, чем у калиброванного проката, подготовленного по варианту 1. Значения относительного удлинения и относительного сужения практически одинаковы.

Калиброванный прокат, подготовленный по технологическому варианту 2, может быть использован для высадки болтов холодным способом.

У калиброванного проката, изготовленного по варианту 3 временное сопротивление разрыву более высокое, чем у калиброванного проката, изготовленного по варианту 1.

Анализ результатов испытаний болтов на разрыв показал, что болты, изготовленные по технологическому варианту 2 из стали 40Х, имеют излом 2-х видов: волокнистый и смешанный. Все остальные исследованные болты имеют волокнистый излом. Болты, высаженные по технологическому варианту 1 и по технологическому варианту 2 и 3, отвечают классу прочности 10.9 ГОСТ 1759-72. Высадка болтов из калиброванного проката, изготовленного по технологическому варианту 3, затруднена, так как прокат имеет завышенное сопротивление пластической деформации металла.

Выводы

1. Пластические показатели калиброванного проката, подготовленного по технологическим схемам 1, 2 и 3, отвечают требованиям ГОСТ 10702-78.

2. Калиброванный прокат, подготовленный по варианту 1, отвечает требованиям ГОСТ 10702-78 и может быть использован для изготовления крепежа методом холодной высадки. Крепеж, предназначенный для использования под класс прочности 8.8 и выше, должен подвергаться термической закалке.

3. Хромистые марки сталей, подготовленные по технологической схеме 3 со степенями обжатия при калибровании после изотермической обработки 20-26,5%, обладают более высоким сопротивлением пластической деформации относительно технологических вариантов 1 и 2. Высадка болтов с данными механическими свойствами ухудшает энергосиловые показатели и снижает стойкость инструмента за счет высоких удельных нагрузок и не рекомендуется при изготовлении калиброванного проката под холодную высадку.

4. Калиброванный прокат, подготовленный по технологическому варианту 2, имеет завышенное значение по сопротивлению пластической деформации, чем металлопрокат, подготовленный по технологическому варианту 1.

5. Метизные изделия, высаженные из калиброванного проката по технологической схеме 2, соответствуют классу прочности 10.9 по ГОСТ 1759-72 и не требуют дальнейшей их термической закалки.

04 семестр / Домашние задания / Готовые ДЗ варианты Остальные / Остальные / 40Х

МГТУ им. Н. Э. Баумана

по курсу материаловедения

Студент: Клёнкин А. В.

Преподаватель: Силаева В. И.

Для изготовления шестерней, валов, осей применяется улучшаемая хромистая сталь, легированная бором.

1. Подберите легированную сталь для изготовления оси диаметром 20мм.

Укажите оптимальный режим термической обработки, обеспечивающей получение твердости 265HB, постройте график термической обработки в координатах “температура — время”.

2. Опишите все структурные превращения, происходящие при процессе улучшения стали.

3. Приведите основные сведения об этой стали: ГОСТ, химический состав, свойства, влияние легирующих элементов на прокаливаемость достоинства, недостатки и т.д.

Для изготовления шестерней, осей, валов применяют улучшаемую хромистую сталь, легированную бором.

Особенности работы деталей типа оси состоят в том, что в них используют прочность и сопротивление усталости стали. В связи с этим стали должны иметь большой запас прочности и высокий предел выносливости. Детали этого типа работают при статических нагрузках.

Для обеспечения этих свойств вводят легирующие элементы, что повышает конструкционную прочность стали. Их применяют после закалки и отпуска, поскольку в отожженном состоянии они по механическим свойствам практически не отличаются от углеродистых. Высокие механические свойства при улучшении возможны лишь при обеспечении требуемой прокаливаемости, поэтому она служит важнейшей характеристикой при выборе этих сталей. Кроме прокаливаемости важно получить мелкое зерно и не допустить развития отпускной хрупкости.

К группе легированных конструкционных сталей относятся среднеуглеродистые стали с содержанием углерода 0,3. 0,5% , которые для улучшения свойств (прокаливаемость, мелкозернистая структура, предел выносливости) дополнительно легируют хромом

Читать еще:  О качестве радиально-шариковых подшипников качения

( до 2%), никелем (от 1 до 5%), марганцем (до 1,5%), кремнием (до 2%), молибденом и вольфрамом (0,2-0,4 Mo и 0,8-1,2 W), ванадием и титаном (до 0,3% V и 0,1% Ti), а так же микро легируют бором

Среднеуглеродистые стали приобретают высокие механические свойства после термического улучшения – закалки и высокого отпуска (500-650град) на структуру сорбита.

В соответствии с заданием необходимо подобрать легированную сталь. Выбираем сталь 40Х, так как она относится к широко используемым дешевым конструкционным материалам. Хромистые стали склонны к отпускной хрупкости, устранение которой требует быстрого охлаждения от температуры высокого отпуска. Эта сталь прокаливается на глубину 15-25 мм и применяется для деталей небольшого сечения.

Примем первый вариант термической обработки: закалку и высокий отпуск. По данным ГОСТ 4543-71 температура закалки для стали 40Х составляет 850 С (Ас3 – 815 С). В качестве охлаждающей среды выбираем воду. Последующий отпуск назначаем при температуре 600 С

(выше интервала температур необратимой отпускной хрупкости).

Указанный режим термообработки обеспечивает получение следующих свойств (минимальные значения):

0.2 > 720 Мпа;  > 14 %

в > 860 Мпа;  > 60 %

HB  265 после отпуска при 600 С.

Сталь 40Х – сталь перлитного класса до термообработки имеет структуру:

Феррит (Ф) + Перлит (П). П (Ф+Fe3C).

Ф=Fe(C) – твердый раствор, С’ в Fe.

На практике при обычных скоростях нагрева (электропечи) под закалку перлит сохраняет свое пластинчатое или зернистое строение до температуры Ас1. При нагреве до Ас1 (743 С.) никаких превращений не происходит. При температуре Ас1 в стали происходит превращение перлита в аустенит. Кристаллы (зерна) аустенита зарождаются в основном на границах фаз феррита и цементита. При этом параллельно развиваются 2 процесса: полиморфный переход Fe  Fe и растворение цементита в аустените.

Представим общую схему превращения:

Ф+П (Ф+Ц) Ас1Ф+Ц+АА+ЦАнеоднородн.Агомогенный

Образование зерен аустенита происходит с большей скоростью, чем растворение цементита перлита, поэтому необходима выдержка стали при температуре закалки для полного растворения цементита и получения гомогенного аустенита. Фазовая перекристаллизация приводит к измельчению зерна в стали. При этом, выше дисперсность структуры перлита (Ф+Ц) и скорость нагрева стали, тем больше возникает центров зарождения аустенита, а следовательно возрастает дисперсность продуктов его распада, что приводит к увеличению пластичности, вязкости, уменьшению чувствительности к концентрации напряжений.

При охлаждении при Vохл. > Vкрит будет образовываться мартенсит – неравновесная фаза – пересыщенный твердый раствор внедрения углерода в Fe и остаточный аустенит (А). Кристаллы мартенсита М, имея пластинчатую форму, растут с огромной скоростью, равной скорости звука в стали(5000м/с). Росту кристаллов мартенсита препятствует граница зерна аустенита или ранее образовавшаяся пластина мартенсита(рис. 2).

Мартенситное превращение состоит в закономерной перестройке решетки, при которой атомы не обмениваются местами, а лишь смещаются на расстояния, не превышающее межатомные. При этом перестройка решетки происходит по тем кристаллографическим плоскостям исходной модификации, которая по строению одинаковая, а по параметрам близки к определенным плоскостям кристаллической решетки образующей фазы, т.е. выполняется принцип структурного и размерного соответствия. Для мартенситного превращения характерно, что растущие кристаллы мартенсита когерентно связаны с кристаллами исходной фазы. Два кристалла считаются когерентными, если они соприкасаются по такой поверхности раздела, которая является общей для их кристаллических решеток. При нарушении когерентности решеток интенсивный упорядоченный переход атомов из аустенита в мартенсит становится невозможным, и рост кристалла мартенсита прекращается. Мартенсит имеет тетрагональную пространственную решетку. Чем больше углерода было в аустените, тем большее число элементарных ячеек мартенсита будет содержать атом углерода и тем большими окажутся средние искажения пространственной решетки.

Свойства мартенсита сталей зависят от растворенного в нем углерода.

Мартенсит имеет очень высокую твердость равную или превышающую HRC 60, при содержании углерода большем 0,4%.

После мартенситного превращения в стали сохраняется небольшое количество остаточного аустенита(1 – 3%). Затрудненность распада последних порций аустенита связывают с появлением значительных сжимающих напряжений, возникающих вследствие увеличения объема при переходе ГЦК решетки в ОЦК решетку.

Для придания стали требуемых эксплуатационных свойств, после закалки всегда проводят отпуск. При отпуске снижается уровень напряженного состояния ( в, НВ,, КСV).

До t =80C не происходит никаких структурных изменений. Первое превращение при отпуске развивается в диапазоне 80. 200C и приводит к формированию структуры отпущенного мартенсита – смеси пересыщенного углеродом -раствора и когерентных с ним частиц карбида. В результате этого существенно уменьшается степень тетрагональности мартенсита (часть углерода выделяется в виде метастабильного -карбида ), уменьшается его удельный объем, снижаются остаточные напряжения.

Второе превращение при отпуске развивается в интервале температур 200. 260 C (300 C) и состоит из следующих этапов:

превращение остаточного аустенита в отпущенный мартенсит;

распад отпущенного мартенсита: степень его пересыщенности уменьшается до 0,15. 0,2% , начинается преобразование -карбида в Fe3C –цементит и его обособление, разрыв когерентности;

снижение остаточных напряжений:

некоторое увеличение объема, связанное с переходом АостМотп.

Третье превращение при отпуске развивается в интервале 300. 400C. При этом заканчивается распад отпущенного мартенсита и процесс карбидообразования. Формируется ферритокарбидная смесь, существенно снижается остаточные напряжения; повышение температуры отпуска выше 400C активизирует процесс коалесценции карбидов, что приводит к уменьшению дисперсности феррито-цементитной смеси.

В стали 40Х после полной закалки в воде и высокого отпуска при 600C образуется структура сорбита отпуска.

Сталь 40Х. Основные данные. ГОСТ 4543 – 71.

Химический состав: С – 0,36. 0,44 %; Ni – не более 0,3%;

Si – 0,17. 0,37 %; Cu – не более 0,3%;

Мn – 0,50. 0,80 %; S – не более 0,035%

Сr – 0,80. 1,10 %; P – не более 0,035%

Назначение – оси, валы, вал-шестерни, плунжеры, штоки, коленчатые и кулачковые валы, кольца, шпиндели, оправки, рейки, зубчатые венцы, болты, полуоси, втулки и другие улучшаемые детали повышенной прочности.

Прокаливаемость 18 – 25 мм.

Улучшение механических свойств обусловлено влиянием легирующих элементов на свойства феррита, дисперсность карбидной фазы, устойчивость мартенсита при отпуске, прокаливаемость, размер зерна.

Легирующие элементы, растворяясь в феррите, упрочняют его. Наиболее сильно повышают твердость медленно охлажденного (нормализованного) феррита кремний, марганец, никель, т.е. элементы, имеющие отличную от Fe кристаллическую решетку. Слабее влияют молибден вольфрам и хром, изоморфные Fe. Упрочняя феррит и мало влияя на пластичность, большинство легирующих элементов снижают его ударную вязкость, особенно если их концентрация выше 1%. Исключение составляет никель, который не снижает вязкости. Марганец и хром при содержании до 1% повышают ударную вязкость; при большей концентрации она снижается, достигая уровня нелегированного феррита, примерно при 3% Cr и 1,5% Mn.

Вид поставки – сортовой прокат, в том числе фасонный: ГОСТ 4543 –71,

ГОСТ 2590 – 71, ГОСТ 2591 – 71, ГОСТ 2879 – 69, ГОСТ 10702 – 78.

Калиброванный пруток ГОСТ 7417 – 75, ГОСТ 8559 – 75, ГОСТ 8560–78,

ГОСТ 1051 – 73. Шлифованный пруток и серебрянка ГОСТ 14955 – 77.

Лист толстый ГОСТ 1577- 81, ГОСТ 19903 – 74. Полоса ГОСТ 103 – 76,

ГОСТ 1577 – 81, ГОСТ 82 – 70. Поковки ГОСТ 8479 – 70. Трубы

ГОСТ 8731-87, ГОСТ 8733 – 87, ГОСТ 13663 – 68.

График термической обработки Свойства стали 40 х

Так как исходной заготовкой для производства калиброванного проката является горячекатаный прокат, то его пластичность во многом определяет дальнейшую способность к волочению [6]. Качество горячекатаного проката оценивается соответствием нормативным требованиям его геометрических параметров (овальность и установленные величины допуска на диаметр), химического состава и механических характеристик. Оно также определяется структурой проката, которая, в свою очередь, зависит от способа изготовления, включая разливку стали, нагрев заготовок и горячую прокатку на прокатном стане, способа охлаждения и последующей термообработки [7]. Горячекатаный прокат должен иметь высокую степень чистоты поверхности и бездефектное поперечное сечение [4]. Если получаемый с металлургических комбинатов горячекатаный прокат, согласно ГОСТ 10702-78, предназначен для последующего холодного волочения, то особое значение имеют технологические процессы, обеспечивающие получение пригодного для ХОШ проката, со значительными обжатиями без промежуточной термической обработки.

1. Механические характеристики горячекатаного проката

Структурное состояние и качество поверхности горячекатаного проката во многом определяют дальнейшее качество калиброванного проката и изготовленных из него длинномерных болтовых изделий. Механические характеристики, являющиеся наиболее используемыми показателями качества сталей, в значительной степени определяются пластической и термической обработкой, которые изменяют структуру на макро и микроскопическом уровне [3]. В табл. 1 и 2 приведены химический состав, прочностные и пластические характеристики, твердость исследуемого горячекатаного проката диаметром 13,0 мм стали 40Х.

Химический состав стали 40Х

Механические свойства горячекатаного проката стали 40Х

Прочностные и пластические

Результаты исследования микроструктуры горячекатаного проката показали, что она представляет собой «перлит + феррит».

Образцы выдержали испытания осадкой до 1/2 высоты первоначального образца, как этого требует ГОСТ 10702-78.

Таким образом, исследованный исходный горячекатаный прокат стали 40Х по химическому составу и механическим характеристикам соответствует ГОСТ 10702-78.

Схема-диаграмма изотермического превращения аустенита для эвтектоидной стали представлена на рис. 1.

Рис. 1. Схема-диаграмма изотермического превращения аустенита эвтектоидной стали с обозначением получаемых структур в зависимости от скорости охлаждения. Условные обозначения: П – перлит, С – сорбит, Т – Троостит, М – Мартенсит, Аост. – аустенит остаточный, Б – бейнит, Vвкз – верхняя критическая скорость закалки

Калиброванный прокат (диаметр 8,0 мм) получали из горячекатаного проката, который подвергали холодному волочению на однократном волочильном стане. При волочении происходил наклёп, прочностные характеристики проволоки увеличивались, а пластические снижались (рис. 2 и 3).

Влияние деформации при волочении на пластические характеристики горячекатаного проката показано на рис. 3.

Для получения достаточной пластичности (ψ = 50 – 57 %) и требуемой прочности (σв = 920 – 1050 МПа) прокат подвергали патентированию. Патентирование – это специфический процесс термообработки. По главному классификационному признаку – типу фазовых превращений – он относится к отжигу 2-го рода, являясь одной из разновидностей изотермических обработок.

Рис. 2. Зависимость σв и σт от обжатия при волочении горячекатаного проката

Рис. 3. Зависимость δ,% и ψ,% от обжатия при волочении горячекатаного проката

Читать еще:  Ортофосфорная кислота: применение против ржавчины

Температуру в селитровой ванне при патентировании (выдержке при заданной температуре) меняли от 370 до 550 ºС. При патентировании аустенит в данном интервале температур должен распадаться на квазиэвтектоидную смесь тонкопластинчатого строения, которую называют сорбитом патентирования. Дисперсность частиц сорбита патентирования определяется прежде всего температурой изотермической среды. Температура нагрева проката стали 40Х (880 ºС) должна обеспечить гомонизацию аустенита [1].

Известно [2], что устойчивость аустенита, характеризуемая длительностью периода до начала распада, называемого инкубационным, а также временем полного превращения аустенита, меняется с изменением температуры изотермического превращения, и в координатах «температура – время» кривые изотермического превращения имеют S-образную форму. Реальное превращение аустенита (при выдержке проката стали 40Х в селитровой ванне с температурой 400–550 ºС) происходило в температурном интервале сорбитного превращения 480-630 ºС. Время пребывания проката в селитровой ванне должно быть несколько большим времени окончания сорбитного превращения. Низкая температура ванны (ниже 350 ºС) может способствовать образованию твердой и хрупкой структуре верхнего бейнита; высокая температура селитровой ванны (выше 670 ºС) может привести к снижению прочностных характеристик проката (образуется перлит).

Ввиду того, что в условиях действующего производства ванны патентирования имеют ограниченную длину, то выдержку прутка, при заданных температурах селитровой ванны, происходила в течение 5-ти минут. Верхнюю температуру нагрева прутка (перед началом выдержки в селитровой ванне) оценивали так, что за три секунды переноса она составит 800 ºС.

Параметры охлаждения прутка при разных температурах селитровой ванны (370, 400. 425, 450. 500 и 550 ºС) представлены в табл. 3–8.

Время охлаждения проката при температуре селитровой ванны, раной 370 ºС

Промежуточные температуры проката при охлаждении в селитровой ванне, ºС

Время охлаждения проката до заданной температуры, мин (сек)

Кинетика охлаждения проката при температурах селитровой ванны, равной 400 ºС

Промежуточные температуры проката при охлаждении в селитровой ванне, ºС

Время охлаждения проката до заданной температуры, мин (сек)

Время охлаждения проката при температуре селитровой ванны, раной 425 ºС

Промежуточные температуры проката при охлаждении в селитровой ванне, ºС

Время охлаждения проката до заданной температуры, мин (сек)

Кинетика охлаждения проката при температуре селитровой ванны, раной 450 ºС

Промежуточные температуры проката при охлаждении в селитровой ванне, ºС

Время охлаждения проката до заданной температуры, мин (сек)

Кинетика охлаждения проката при температуре селитровой ванны, раной 500 ?С

Промежуточные температуры проката при охлаждении в селитровой ванне, ºС

Время охлаждения проката до заданной температуры, мин (сек)

Кинетика охлаждения проката при температуре селитровой ванны, раной 550 ?С

Промежуточные температуры проката при охлаждении в селитровой ванне, ºС

Время охлаждения проката до заданной температуры, мин (сек)

Рассчитали и построили кривые охлаждения прутка в селитровой ванне с заданной температурой.

На рис. 4 представлены кривые изотермического превращения аустенита для стали марки 40Х и кривые охлаждения при температурах селитровой ванны 370, 400, 425, 450, 500 и 550 ºС.

С понижением температуры селитровой ванны от 550 до 370 ºС устойчивость аустенита меняется (рис. 1). Для завершения превращения аустенита при 550 ºС требуется около 10–12 минут, но в наших исследованиях превращение аустенита при температуре селитровой ванны 550 ºС заканчивалось при более высокой температуре

за 85 сек. Для завершения превращения аустенита при 500 ºС требуется около 5,5 минут; для завершения превращения аустенита при 450 ºСтребуется около 100 секунд, для завершения процесса при 400…450 ºС требуется около 2 минут. Ниже 400 ºС устойчивость аустенита снова возрастает. Длительность инкубационного периода устойчивости аустенита при температурах ниже 400 ºС, как и время, требующееся для полного превращения аустенита, больше, чем при температурах около 450 ºС.

Рис. 4. Кривые изотермического превращения аустенита и кривые охлаждения стали 40Х при разных температурах селитровой ванны

Продукты превращения аустенита, получающиеся в результате изотермического превращения при различных температурах в селитровой ванне, показывают, что в районе температур 630 ºС…420 ºС получаются структуры эвтектоидного типа, тем более дисперсионные, чем ниже температура превращения. Этот способ изотермического охлаждения, при разных температурах селитровой ванны, исследовали для получения в прокате различных по дисперсности структур сорбита патентирования. После операции патентирования методом волочения изготовили калиброванный прокат и выявили оптимальные прочностные и пластические характеристики и твердость, которые полностью соответствуют нужному классу прочности болтовых изделий [5,8–10].

Выводы

Пластичность горячекатаного проката во многом определяет дальнейшую его способность к волочению, так как он является исходной заготовкой для производства калиброванного проката методом ХОШ.

Структурное состояние и качество поверхности горячекатаного проката во многом определяют дальнейшее качество калиброванного проката и изготовленных из него длинномерных болтовых изделий. Механические характеристики, являющиеся наиболее используемыми показателями качества сталей, в значительной степени определяются пластической и термической обработкой, которые изменяют структуру на макро и микроскопическом уровне.

Для получения достаточной пластичности (ψ = 50 – 57 %) и требуемой прочности (σв = 920 – 1050 МПа) прокат подвергали патентированию.

Продукты превращения аустенита, получающиеся в результате изотермического превращения при различных температурах в селитровой ванне, показывают, что в районе температур 630 ºС…420 ºС получаются структуры эвтектоидного типа, тем более дисперсионные, чем ниже температура превращения.

Применение этого изотермического охлаждения, при разных температурах селитровой ванны позволило выявить оптимальную твердость, прочностные и пластические характеристики, полностью соответствующие нужному классу прочности болтовых изделий.

Влияние термомеханического режима технологического процесса на формирование эксплуатационных свойств деталей

Авторы статьи рассматривают влияние технологических маршрутов обработки детали на процесс формирования оптимальных структурных состояний и соответствующих им прочностных свойств металла.

Авторы статьи рассматривают влияние технологических маршрутов обработки детали на процесс формирования оптимальных структурных состояний и соответствующих им прочностных свойств металла.

Разработаны рекомендации по выбору рационального термомеханического режима обработки пластическим формообразованием для улучшения свойств материала изготавливаемой детали.

Детали машин при эксплуатации работают в отличающихся условиях окружающих сред, нагрузок и скоростей, поэтому имеют различные виды потери работоспособности и износа. По этим же причинам для их изготовления применяется большое разнообразие материалов и технологий.

При выборе способа изготовления необходимо стремиться к тому, чтобы деталь получала объемные и поверхностные свойства, соответствующие условиям эксплуатации и гарантирующие требуемый ресурс. Это возможно, если выбор способа изготовления осуществляется с учетом процессов формирования служебных свойств детали при ее производстве [1,2,3].

Долговечность деталей, обусловленная наиболее опасными отказами по разрушению, прежде всего, зависит от прочностных свойств металла.

Прочность определяется как сопротивление металла необратимым (пластическим) деформациям. Современные представления, о пластической деформации связывают ее с подвижностью дислокаций. Повышения сопротивления деформации можно добиться формированием определенной тонкой структуры металла, тормозящей движение дислокаций [4]. Основные механизмы торможения дислокации сводятся к следующему:

— образование скоплений (сегрегаций) атомов легирующих элементов (или вакансий) вокруг дислокаций в твердых растворах;

— повышение плотности дислокаций, приводящее к усилению взаимодействия атомов вблизи движущихся дислокаций. При этом поле напряжений сил взаимодействия атомов у одних дислокаций мешает перемещению других;

— образование барьеров для движущихся дислокаций в виде поверхности раздела в кристаллах или частиц второй упрочняющей фазы, т.е. создание внутри сплава объектов с различной кристаллографией скольжения дислокаций.

На процесс формирования оптимальных структурных состояний металла и соответствующих им прочностных показателей решающим образом влияет технологические маршруты обработки детали. Принципиальная схема формирования промежуточных технологических и окончательных эксплуатационных свойств в системе производства представлена на рис. 1, где: Sи — исходные свойства материала; Sс — эксплуатационные свойства деталей; а, г — маршруты обработки с косвенным влиянием технологии пластического формообразования (ТПФ) на Sc ; в, б — маршруты обработки с непосредственным влиянием ТПФ на Sс; д, е — маршруты обработки без влияния ТПФ на Sc; Н — нормализация; ТУ — термоулучшение; РО — рекристаллизационный отжиг; ДО — диффузионный отжиг; СфО- — сфероидизирующий отжиг; СО — смягчающий отжиг; OПС — отжиг на перлитную структуру; ОКЗ — отжиг на крупное зерно; ЗО — закалка + отпуск; ХТО — химико-термическая обработка; ФO — физическая обработка (лазерная, плазменная и т.п.); ТЦО — термоциклическая обработка; ХОШ — холодная объемная штамповка; НТМО и ВТМО — штамповка в режиме низко- и высокотемпературной термомеханической обработки; ВШ — высокоскоростная штамповка; СПШ — штамповка в условиях сверхпластичности; ГОШ — горячая объемная штамповка; ИШ — изотермическая штамповка.

Изменение свойств материала в процессе изготовления деталей целесообразно анализировать с учетом технологической наследственности. Качество деталей определяется не только финишной обработкой, но и особенностями всех предшествующих ей операций и технологических процессов.

Рис. 1 Структурно-функциональная модель формирования технологических и эксплуатационных свойств сталей при формообразовании пластической деформацией

Носителями наследственной информации являются химический состав, микро- и макроструктура материала и связанные с ней механические характеристики и другие свойства. Для достижения высоких показателей эксплуатационных свойств материала деталей необходимо учитывать технологическую наследственность, а лучше — управлять ею.

Технологические факторы, позитивно влияющие на качество детали, необходимо сохранять и развивать, а отрицательно влияющие желательно нивелировать на начальных стадиях обработки.

Влияние конкретной технологической операции обработки на изменение свойств материала целесообразно оценивать через коэффициент наследования:

где Сi, Ci+1 — значения некоторого свойства, соответственно, до и после технологического воздействия на материал.

Коэффициент наследования характеризует изменение свойств на данном этапе обработки относительно их значений на предшествующем этапе. Значение Кс = 1 свидетельствует о том, что i-e свойство наследуется без изменений, при Кс > 1 значение свойства повышается, а при Кс о С в воде — вариант 1 табл. 2).

Процессы структурообразования в аустените по мере увеличения степени горячей пластической деформации для температурно-скоростных интервалов, отвечающих реализации различных механизмов, протекают в следующей последовательности. При разупрочнении по типу динамической полигонизации (ДП — вариант 2) (табл. 3) с увеличением степени деформации от 5 до 25% увеличивается текстурированность исходных зерен.

Таблица 2. Анализируемые варианты технологических маршрутов ВТМО и их термомеханические параметры

х — выполненная операция

В структуре стали после деформирования при 800°С (вариант 3) с предварительной аустенизацией при 1200°С также наблюдаются деформированные вытянутые зерна без признаков протекания динамической рекристаллизации.

Читать еще:  Упрочнение структуры термодиффузионной обработкой деталей

Увеличение скорости деформациидо 5 с-1 при ТД = 900°С (вариант 7) приводит к получению полностью динамически рекристаллизованной структуры (как за счет увеличения скорости, так и за счет большей, чем при= 0,5 с-1 реальной температуры деформации) вследствие меньшей продолжительности времени контакта заготовки с инструментом, а, следовательно, меньшего ее подстуживания. В целом, совокупное влияние маршрутов и режимов на структуру горячедеформированного аустенита приведено в табл. 3

Таблица 3. Структура горячедеформированного аустенита в исследованных вариантах термомеханической обработки

Примечание: ДП, ДР — структура горячедеформированного аустенита, соответствующая процессам динамической полигонизации и пластической рекристаллизации, соответственно

Наследственное влияние типа структуры горячедеформированного аустенита, образовавшейся в результате ВТМО, на конечные свойства материала деформированных заготовок можно оценить по результатам различных испытаний, проводимых по стандартным методикам.

Характеристики прочностии пластичности ​относительные удлинение и сужение образца) стали определялись в испытаниях на растяжение пятикратных образцов диаметром 5 мм в соответствии с ГОСТ 1497-84.

Испытания на ударную вязкость проводили в соответствии с ГОСТ 9454-78. Образцы вырезали вдоль деформированных заготовок, и на них выполняли надрез типа Шарпи. Долю вязкой составляющей в изломе определяли визуально. Критическую температуру хрупкости Ткр 20 определяли по наличию в изломе 20% вязкой составляющей разрушения.

Испытания проводили при различных температурах.

Испытания на износостойкость проводились в условиях сухого трения при давлении 100 Н и скорости вращения диска 675 об/мин. Объемы выработанных углублений Y (индекс 30 соответствует диаметру кольца шириной 2,5 мм контр. тела из твердого сплава) находили с помощью специальных таблиц по результатам измерения на микроскопе глубины вытертых лунок.

Результаты испытаний показали, что горячая деформация в режиме ВТМО на 25% со скоростью=0,5 с-1 при Тд=900°С (вариант 5), а в большей мере при 850°С (вариант 8), приводит к повышению свойств сталей в закаленном и низкоотпущенном состоянии (150°С, 2часа), причем одновременно растут и прочность, и пластичность.

Это обеспечивается созданием полигонизированной структуры в горячедеформированном аустените (нерекристаллизированные объемы менее 25%). Дальнейшее увеличение степени деформации до 50% при 850°С (вариант 9), за счет увеличения доли полигонизованной структуры, ведет к еще большему повышению комплекса характеристик​.

При Тд = 900°С развивающаяся наряду с динамической полигонизацией рекристаллизация уменьшает этот эффект ВТМО.

Получение развитой полигонизованной структуры (вариант 8) без признаков динамической рекристаллизации после ВТМО приводит к еще большему повышению прочностных характеристики небольшому падению пластичности (

При увеличении скорости деформации, вследствие полного прохождения динамической рекристаллизации, при обеих степенях деформации (25 и 50%) (вариант 7 и 10) характеристики прочности в результате ВТМО меняются мало по сравнению с контрольной обработкой. Пластичность (в основном) растет с 42 до 52%.

При последующем высоком отпуске (540°С, 1час) прирост прочностных характеристик сохраняется, пластичность сталей при этом изменяется в меньшей степени.

Продолжительный охрупчивающий отпуск (500°С, 100 час) практически не изменяет уровня свойств, полученных при обычном высоком отпуске; иными словами, состояние отпускной хрупкости не сказывается на обычных механических свойствах стали при испытании на растяжение.

Полигонизированная структура (рекристаллизованные объемы не более 30%) приводит к значительному повышению ударной вязкости при всех температурах испытания и снижению критической температуры хрупкости. Вследствие образования мелкого зерна в полностью динамически рекристаллизованных структурах ударная вязкость при пониженных температурах после такой ВТМО также выше, чем после обычной закалки.

В наибольшей степени эффект ВТМО для всех типов структур проявляется при низких температурах испытания (табл. 4). Так, для стали 40Х при температурах испытания — 100 и — 20°С ударная вязкость возросла в 2,3 — 2,5 раза.

Таблица 4. Результаты испытаний на ударную вязкость

Термическое улучшение металла

Термическое улучшение металла (термообработка) — это двойная термическая обработка железоуглеродистых сплавов, заключающаяся в закалке на мартенсит с последующим высоким отпуском (при Т=550. 650°C). [1]

Улучшение сталей

Когда применяется термическое улучшение сталей:
В результате закалки сталь обычно приобретает микроструктуру мартенсита (с некоторым количеством остаточного аустенита). Иногда в стали после закалки может получаться структура сорбита (См. Сорбит, сорбитизация), троостита или бейнита. Так как мартенсит обладает высокой твёрдостью и прочностью, имеет низкую пластичность, то механическая обработка его затруднена, к тому же вероятно разрушение из-за хрупкости. В процессе термического улучшения стали отпуск приводит к распаду мартенсита закалки и образованию сорбита отпуска, вследствие чего уменьшаются внутренние внутренние напряжения в стали. В результате термообработки — улучшения — повышаются пластичность и ударная вязкость стали, при этом прочность и твёрдость металла сохраняют хорошие показатели.

Улучшаемая сталь

Примеры улучшаемых сталей:

Углеродистые улучшаемые стали: сталь 30, сталь 35, сталь 40, сталь 45, сталь 50.

Легированные улучшаемые стали: 40Х, 45Х, 40ХР, 40ХН, 40ХНА, 40ХНМА, 30Х2Н4МА, 38ХН3МА, 38Х2НМА, 30ХГСА, 30ХГС-Ш.

Некоторые улучшаемые стали пригодны для поверхностной закалки (плазменной и индукционной), в частности — сталь 45.

Основным свойством улучшаемых сталей является прокаливаемость, которая зависит от химического состава стали. Изделие должно полностью прокаливаться насквозь (сквозное улучшение). Стали с малой способностью к сквозному улучшению пригодны для изделий с небольшим поперечным сечением. Другое важное свойство улучшаемых сталей — предел текучести (после улучшения стали), требования к которому предъявляются в зависимости от марки стали и диаметра изделия. [2]

После улучшения гарантируются следующие свойства сталей: временное сопротивление σВ от 55 до 150 кгс*мм -2 , удлинение δ 5 от 6 до 50%, поперечное сужение ψ=30-60% (по данным [2]). Изменение значений этих свойств в зависимости от температуры отпуска иллюстрируется «диаграммами улучшения» (пример на рисунке).

Термическая обработка. Улучшаемые стали поставляются потребителю в горячекатанном или нормализованном состоянии. После механической обработки до окончательных размеров и получения деталей проводятся улучшение сталей или поверхностная закалка.

Улучшение стали 45

Углеродистая улучшаемая сталь 45 имеет низкую прокаливаемость и после термического улучшения предназначается для изготовления деталей небольшого сечения (до 15 мм). Режим термообработки, в частности, термического улучшения, стали 45 подбирается в зависимости от размеров, вида изделия (прокат, поковки..) и его назначения. Режимы термообработки — закалки и отпуска при улучшения стали 45 для различных сечений приводятся в стандарте ГОСТ 1050-88. Сталь качественная и высококачественная. [3]

Механические свойства стали 45, в свою очередь, зависят от технологического режима улучшения. Например, сталь 45 после улучшения с закалкой при 830-850°C и отпуском при 550° имеет свойства: σВ=900-1000 МПа, σ0,2=750-850 МПа, δ=12-8%, ψ=65-55%, KCU=1,2-1,1 МДж/м 2 , HB=255-269 [4]. При повышении температуры отпуска значения σВ, σ0,2 и HB уменьшаются, а значения δ, ψ и KCU увеличиваются, и наоборот.

Автор: Корниенко А.Э. (ИЦМ)

Лит.:

  1. Иванов В.Н. Словарь-справочник по литейному производству. – М.: Машиностроение, 1990.
  2. Циммерман Р., Гюнтер К. Металлургия и материаловедение. Справ изд. Пер. с нем. М.: Металлургия, 1982. 480 с.
  3. ГОСТ 1050-88. Сталь качественная и высококачественная. Сортовой и фасонный прокат, калиброванная сталь.
  4. Металловедение и термическая обработка стали: Справ. изд. — 3-е изд., перераб. и доп. В 3-х т. Т II. Основы термической обработки/ Под ред. Бернштейна М.Л., Рахштадта А.Г. М.: Металлургия, 1983. 368 с.

Конкурс «Я и моя профессия: металловед, технолог литейного производства». Узнать, участвовать >>> —>

Сталь 40хн — характеристики, термообработка, применение

Сталь 40хн (Гост 4543-71) относится к качественным конструкционным сталям (т.е предназначенным для изготовления машиностроительных и строительных изделий) легированным хромоникелевым стальным сплавам. Добавление никеля в состав стали повышает ее химическую устойчивость. Впервые это явление было открыто в конце девятнадцатого века. Французский химик Пруст высказал предположение, что железные метеориты слабо подвержены коррозии именно благодаря никелю в их составе. Через 20 лет Фарадей выплавил первый сплав железа и никеля, который обладал повышенной антикоррозийной устойчивостью. Но только после получения ковкого никеля появилась возможность создавать никелевые стальные сплавы, которые обладали в два раза большим пределом упругости, высокими антикоррозийными свойствами и большой механической прочностью. Дополнительную устойчивость к коррозирующим факторам сталь 40 хн приобретает благодаря добавке хрома. Он также усиливает такие механические свойства стали 40хн, как твердость и прочность.

Основная область применения стали 40хн – изготовление деталей, которые эксплуатируются в условиях повышенной динамической нагрузки, вибрации. Это такие детали, как оси, шатуны, валы, замки (ниппели и муфты) для нефтепроводов. Изготавливают из стали 40хн также зубчатые колеса, шпиндели, болты, штоки гидроцилиндров, валки прокатных станов. В общем, этот сплав используется для деталей, материал которых должен обладать повышенной вязкостью, и прочностью. Максимальная толщина деталей из стали 40хн не должна превышать 120 мм. Аналоги стали 40хн, разрешенные к применению в тех же целях: 40Х, 40ХНМ, 40ХНР, 30ХГВТ, 35ХГФ, 38ХГН, 45ХН, 50ХН.

Сталь 40хн имеет в своем составе: от 0,36 до 0,44% углерода; 0,17-0,37% кремния; 0,5 — 0,8% марганца; от 1 до 1,4% никеля; максимум 0,035% серы и столько же фосфора; 0,45 – 0,75% хрома и до 0,3% меди. Содержание серы и фосфора (меньше 0, 36%) позволяет причислять сталь 40хн к качественным легированным сталям. Маркировка стали по ГОСТу 4543-71 обозначает содержание углерода, хрома и никеля, округленные до целого (один процент в маркировке не отражается).

Термообработка стали 40хн включает в себя закалку и отпуск. После такой термической обработки сталь 40хн приобретает предел выносливости по трещинообразованию в 2 раза больший, нежели до обработки, а предел прочности по разрушению – в 6 раз.

Закалка металла 40ХН обычно производится в масле; крупногабаритные детали в редких случаях подвергают закаливанию в воде с последующим немедленным низким отпуском или с переносом в масло. Часто детали из стали 40 хн закаливают при нагревании высокочастотными токами и последующим отпуском. В результате этой процедуры получают высокую поверхностную твердость (RC = 52—56).

Дополнительная вкладка, для размещения информации о магазине, доставке или любого другого важного контента. Поможет вам ответить на интересующие покупателя вопросы и развеять его сомнения в покупке. Используйте её по своему усмотрению.

Вы можете убрать её или вернуть обратно, изменив одну галочку в настройках компонента. Очень удобно.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector