Yoga-mgn.ru

Строительный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

9 Тугоплавкие и благородные металлы и сплавы

9 Тугоплавкие и благородные металлы и сплавы

8. Тугоплавкие и благородные металлы и сплавы

8.1. Общая характеристика тугоплавких металлов и их сплавов

Традиционно к тугоплавким металлам относят металлы, имеющие температуру плавления выше, чем у железа (1539 °С), исключая из этого ряда при этом металлы групп платины и урана и некоторые редкоземельные металлы. Поэтому к группе тугоплавких металлов относят ванадий, вольфрам, гафний, молибден, ниобий, рений, тантал, технеций, титан, хром, цирконий. Все эти элементы относятся к металлам переходных групп. Самостоятельное применение в прикладном материаловедении в качестве конструкционных материалов и материалов с особыми свойствами (исключая из рассмотрения титан, свойства и применение которого приведены ранее) находят V, W, Mo, Nb, Ta, Zr. Физические свойства этих металлов приведены в таблице 8.1.

Таблица 8.1 — Физические свойства тугоплавких металлов

Удельное электросо-противление, мкОм*см

Тип кристалли-ческой решетки

Общими свойствами этих металлов являются: высокие температуры плавления, кипения и рекристаллизации; обладание преимущественно ОЦК-кристаллической решеткой; отсутствие полиморфизма (исключение — цирконий, у которого низкотемпературная модификация обладает ГП-решеткой, а высокотемпературная — ОЦК-решеткой); высокая плотность и малый коэффициент теплового расширения; высокая жаропрочность; высокая стойкость в кислотах; малая распространенность в природе и поэтому — высокая их стоимость (см. табл. 1.2, 1.3).

Ниже приведены специфичекие свойства отдельных металлов и области их применения в технике.

Ванадий. Стоек против окисления до 600 °С, имеет относительно небольшую плотность. Сплавы ванадия используются в авиационной, ракетной и атомной технике, а также в химической промышленности благодаря их высокой коррозионной стойкости.

Ниобий. Характеризуется удачным сочетанием тугоплавкости, высокой прочности, пластичности и малого коэффициента захвата тепловых нейтронов. Легирование ниобия другими металлами лишь незначительно повышает его хрупкость, что выделяет ниобий среди других тугоплавких металлов. Недостатком ниобия и его сплавов является их высокая окисляемость на воздухе при повышенных температурах. При разработке сплавов на основе ниобия перспективной является система Nb — W — Mo — Zr. Так, сплав Nb с 15% W, 5% Mo и 1% Zr при температуре 1200 °С имеет предел прочности 240 Н/мм 2 и относительное удлинение 35%. Применяемый для изготовления листов сплав РН-6 ( Nb + 5,3% W + 5,3 % Mo + 1% Zr) имеет после деформации и отжига предел прочности 890 Н/мм 2 . Защита ниобиевых сплавов от окисления (например, защитным покрытием из дисилицида молибдена) позволяет использовать их при высоких температурах в реактивных турбинах и ракетно-космической технике. Благодаря высокой пластичности, жаропрочности, хорошей свариваемости и высокой температуре плавления ниобий является перспективной основой для создания жаропрочных сплавов. Хорошая коррозионная стойкость и низкий коэффициент захвата тепловых нейтронов делают ниобий перспективным конструкционным материалом для ядерных реакторов. Ниобий является основой для создания сверхпроводящих материалов: критическая температура перехода в сверхпроводящее состояние сплавов системы Nb — Zr около 11 К, а сое-динения Nb Sn — 20 К.

Цирконий. Он не используется для изготовления жаропрочных сплавов, поскольку испытывает полиморфное превращение (То=865 °С), развитие которого при нагреве приводит к разупрочнению металла. На основе циркония разработаны высокопрочные теплоустойчивые (до 500-700 °С) конструкционные сплавы, способные работать в химически активных средах и при низких температурах. Имея малый коэффициент захвата тепловых нейтронов и высокую коррозионную стойкость, цирконий и его сплавы находят применение для изготовления оболочек тепловыделяющих элементов, труб охлаждения и других деталей ядерных реакторов. Характерными примерами сплавов на основе циркония являются циркалой-2 (1,5% Sn), Н1 (1% Nb), Н2,5 (2,5% Nb). Эти сплавы при 400 °С имеют временное сопротивле-ние разрыву и относительное удлинение на уровне: для сплава циркалой-2 — 70 Н/мм 2 и 36%, для сплава Н2,5 — 180 Н/мм 2 и 38% соответственно.

Молибден. Имеет высокие значения модуля упругости, электропроводности, теплопроводности и малый коэффициент термического расширения. Технический Мо хрупок при комнатной температуре (из-за высокого содержания примесей внедрения), плохо сваривается и сильно окисляется при повышенных температурах. Наибольшее распространение в странах СНГ приобрел жаропрочный сплав ЦМ-2А (0,15% Ti, 0,12% Zr), имеющий при 1200 °С sв =220 Н/мм 2 и d =18%. Молибден и его сплавы, наряду с ниобием и сплавами на его основе, являются наиболее перспективными материалами для изготовления обшивки и деталей каркаса ракет и сверх-звуковых самолетов.

Тантал. Обладает высокой пластичностью до очень низкой температуры. Для сплавов тантала характерны высокая прочность и высокая температура рекристаллизации (например, 1600 °С для сплава Ta+20% W). Сплавы тантала с вольфрамом, выпускаемые промышленностью, имеют структуру твердых растворов и применяются как жаропрочные материалы. Чистый тантал применяют в электронной технике для изготовления пружин, конденсаторов, сопротивлений и т.д. Из тугоплавких металлов тантал является наиболее кислотостойким: он не подвергается коррозии в кипящей серной кислоте при ее концентрации до 80%.

Вольфрам. Обладает исключительной тугоплавкостью и высокой прочностью. Однако, малая пластичность и сильная окисляемость при высоких температурах затрудняют разработку и применение сплавов вольфрама. В радиоэлектронике и светотехнике широко применяют нелегированнй вольфрам, а также вольфрам с добавками TaC и ThO2, а также сплавы системы W — Mo, изготовляемые методами порошковой металлургии. Карбид вольфрама (WC) используют для изготовления твердых сплавов для режущего инструмента: системы WC-Co, WC-TiC-Co, WC-TiC-TaC-Co.

8.2. Специфика применения тугоплавких металлов и сплавов в

машиностроении и исследовательских приборах

Вольфрам, молибден, тантал и сплавы на их основе, учитывая их высокое электрическое сопротивление, используют для изготовления нагревательных элементов высокотемпературных (выше 1200°С) термических печей (в виде проволоки и ленты, площадь поперечного сечения которых зависит от необходимой мощности печи), а также нагревательных устройств исследовательских приборов и установок, например, высокотемпературных рентгеновских установок, электронных микроскопов и т.д., для проведения исследований при высоких температурах (до 2500 °С). Учитывая высокую окисляемость тугоплавких металлов, такие нагревательные элементы должны работать в вакууме, либо в атмосфере инертных газов.

Тугоплавкие металлы, прежде всего, тантал, сплав ниобия с танталом и в отдельных случаях — молибден, являются самыми кислотостойкими металлическими материалами. Их применение целесообразно в средах, в которых другие материалы не обладают достаточной коррозионной стойкостью: неорганических концентрированных кислотах при повышенных температурах, некоторых промышленных средах. Ниобий уступает танталу по коррозионной стойкости, но является заметно более дешевым. Добавка к ниобию молибдена и тантала повышает коррозионную стойкость сплава. Сплав Nb + 25% Ta по коррозионной стойкости в кислотах значительно превосходит чистый ниобий и приближается к танталу. Титан при его содержании до 10% не ухудщает коррозионную стойкость ниобия, поэтому в качестве кислотостойкого находят применение тройные сплавы Nb + Ta + Ti. Молибден и вольфрам по стойкости в кипящих кислотах значительно превосходят ниобий и мало уступают танталу, однако, при их использовании для изготовления химической аппаратуры возникают значительные технологические трудности, что ограничивает их применение.

В качестве конструкционных жаропрочных материалов используют обычно не чистые металлы, а их сплавы. При этом ниобий и тантал обычно легируют в больших количествах молибденом, титаном, вольфрамом. Молибден легируют вольфрамом и в небольших количествах — танталом и цирконием. Выбор сплава определяется не только его жаропрочностью, но и технологичесими свойствами и экономической целесообразностью. Так, хрупкие и нетехнологичные сплавы вольфрама, как и чистый вольфрам, применяют обычно при рабочих температурах, превышающих 2000 °С, в условиях сильного эрозионного износа. Сплавы на основе тантала, являющиеся самыми дорогими, применяют для наиболее ответственных элементов. В интервале рабочих температур 1000-1500 °С используют преимущест-венно сплавы на основе ниобия и молибдена. Сплавы молибдена являются наиболее жаропрочными, поэтому их применяют при температурах выше 1200 °С и иногда до 2000 °С.

Ниобий и сплавы на его основе легче других материалов переходят в сверхпроводящее состояние. Чистый ниобий имеет самую высокую критическую температуру перехода в сверхпроводящее состояние: 9,17 К

(- 263,83 °С). Практическое использование находят сверхпроводящие сплавы 65 БТ (в среднем 65% Nb, 25% Ti, 10% Zr) с Ткр=9,7 К, 35 БТ ( 35% Nb, 62% Ti, 3% Zr). Эти сплавы применяют для обмоток мощных генераторов, магнитов большой мощности (например, в поездах на магнитной подушке), туннельных диодов для компьютеров.

8.3. Благородные металлы

К благородным металлам относят золото, серебро, металлы группы платины, а также сплавы на их основе. Свойства благородных металлов приведены в таблице 8.2.

Свое название эти металлы получили из-за высокой коррозионной стойкости -практически они совершенно не склонны к коррозии в обычной атмосфере, воде и многих других средах. Все они характеризуются высокой плотностью, высокой температурой плавления (кроме золота и серебра), очень пластичны (кроме родия и осмия), не имеют аллотропических превращений (кроме родия), отличаются высокой стоимостью.

Золото, серебро, реже — платина применяются в ювелирном деле и в зубоврачебной практике. Причем, чистое золото из-за низкой его твердости применяется редко. Сплавы системы Au — Ag — Cu имеют твердость в 5-8 раз более высокую, чем у золота, хотя и меньшую коррозионную стойкость. В ювелирной промышленности нашли применение сплавы 375, 583, 750 и 916 й проб (цифра — содержание золота на 1000 г. сплава, соотношение серебра и меди может быть различным, в частности, 1 : 1 в сплаве 583-й пробы). Структура сплавов представляет собой однородный твердый раствор (сплавы высокой пробы), или смеси 2-3 твердых растворов.

Таблица 8.2 — Физические и химические свойства

9 Тугоплавкие и благородные металлы и сплавы

К благородным металлам относят восемь элементов Периодической системы: рутений (Ru), родий (Rh), палладий (Pd), осмий (Os), иридий (Ir), платину (Pt) (платиновая группа), а также золото (Au) и серебро (Ag).

В табл. 29.1–29.3 представлены основные физические, механические и коррозионные свойства указанных металлов.

Небольшое содержание в земной коре (10 –5 –10 –8 %), сравнительно малые годовые объемы мирового производства (от десятков и сотен килограмм по осмию и рутению до десятков тонн по платине и до сотен тысяч тонн по золоту и серебру) и уникальные физико-химические свойства благородных металлов ставят их в отдельный ряд и определяют возможность использования в конструкциях в тех случаях, когда условия эксплуатации или технологические требования не позволяют применять другие конструкционные материалы.

К особенностям применения благородных металлов в различных конструкциях следует отнести: относительную инертность при воздействии различных газовых и жидких химических сред, в том числе биологических; способность в большой степени сохранять геометрические размеры и свойства поверхности (при нагреве, в ряде случаев вплоть до предплавильных температур); высокое сопротивление деформации и разрушению при температурах до » 0,9 Тпл (при твердорастворном, дисперсионном и субструктурном упрочнениях); широкие технологические возможности к формоизменению при изготовлении конструкций путем пластической деформации (платина, палладий, золото, серебро и сплавы на их основе) или литья (золото, серебро и их сплавы).

Читать еще:  Виды, характеристики и применение металлопроката

Поэтому, наряду с широким использованием в химическом производстве, в кино- и фотоматериалах, в катализаторах на носителях, в электротехнике и электронике, благородные металлы незаменимы в стоматологии, ювелирной промышленности и машиностроении.

Основные физические характеристики благородных металлов

Механические характеристики благородных металлов
технической чистоты в отожженном состоянии

Качественная оценка коррозионной стойкости благородных металлов

Примечание. А — коррозия не наблюдается; Б — слабо подвержен коррозии; В — подвержен коррозии; Г — быстро коррозирует.

Золото и серебро в качестве конструкционных материалов наиболее широко применяются в стоматологических и ювелирных конструкциях и в значительно меньшей степени (по номенклатуре) в оборудовании химических и других специальных производств (главным образом — серебро в трубопроводах, змеевиках, котлах и т. д.).

Использование золота и серебра в стоматологии, ювелирных, культовых и других изделиях бытового назначения требует установления их пробности, характеризующей в метрической системе содержание основного благородного металла в одной тысяче граммов рассматриваемого материала. Например, 925-я проба для серебряного сплава означает, что в одном килограмме этого материала содержится 925 граммов серебра. Нелегированные благородные металлы характеризуются пробой в пределах от 999 до 999,99.

На практике наиболее распространены три системы проб: метрическая, каратная (США, Великобритания), золотниковая (историческая). Значения проб в разных системах приведены ниже.

Каратная система пробы основана на установлении в сплаве содержания благородного металла в каратах. Карат — мера содержания благородного металла в сплаве, равная 1/24 массы сплава. Чистое золото соответствует 24 каратам.

Золотниковая система пробы основана на использовании русской дометрической меры массы (веса) — золотника, который содержит 96 долей. Чистое золото соответствует 96-й золотниковой пробе.

В Российской Федерации с 1992 года для ювелирных изделий из драгоценных металлов установлены следующие метрические пробы:

  • платиновая — 950-я, 900-я, 850-я;
  • золотая — 999-я, 958-я, 750-я, 585-я, 500-я, 375-я;
  • серебряная — 999-я, 960-я, 925-я, 875-я, 830-я, 800-я;
  • палладиевая — 850-я, 500-я.

На основе определения пробности рассматриваемых изделий или полуфабрикатов из благородных металлов осуществляется их клеймение уполномоченными Инспекциями пробного надзора.

Сплавы на основе золота и серебра для медицины и ювелирных производств должны удовлетворять медико-биологическим, эстетическим, технологическим и эксплуатационным требованиям. К последним относят коррозионную стойкость (инертность к внешней среде), твердость и износостойкость, а также прочностные свойства, определяющие стабильность формы и размеров изделий из благородных металлов.

Хорошее сопротивление коррозии и высокие механические свойства позволяют сохранить требуемые эстетические параметры (цвет, блеск и т. д.) сплавов благородных металлов.

Определяющее влияние на потребительские свойства изделий из сплавов благородных металлов оказывает их технологичность. Для достижения высоких потребительских свойств в таких изделиях необходимо получение плотных (без пор) и химически однородных (в макро- и микрообъемах) мелкозернистых литых заготовок или слитков, способных деформироваться в высококачественные листовые или профильные полуфабрикаты с заданной структурой и высоким сопротивлением трещинообразованию при последующих операциях обработки давлением и пайки.

Данные материалы обладают способностью длительной эксплуатации при высоких температурах в условиях воздействия теплосмен, нагрузок, агрессивных жидких и газовых сред. Поэтому платиновые металлы часто бывают незаменимы в оборудовании для производства высококачественных стекол, оптических монокристаллов, ситаллов и различных силикатных и искусственных волокон.

Они применяются для изготовления тиглей, мешалок, экранов, фильер, химической посуды, термоэлектродов, катализаторных сеток и др. В зависимости от конкретных технических задач и с учетом экономической целесообразности могут использоваться нелегированные металлы (платина, палладий, родий, иридий), сплавы на их основе или материалы, состоящие из нескольких слоев указанных металлов и их сплавов.

В табл. 29.15 приведены допустимые температуры эксплуатации конструкций из обычно используемых платиновых металлов, сплавов и материалов.

Производство продукции из представленных в табл. 29.15 материалов относится к так называемой «малой металлургии», где особенно проявляется влияние технологических факторов (режимов плавки, кристаллизации, термообработки и др.) на структуру и свойства металла. Поэтому строгое соблюдение технологических режимов является непременным для максимальной реализации преимуществ того или иного материала на основе платиновых металлов.

Свойства платиновых металлов и сплавов на их основе очень чувствительны к присутствию в объеме или на поверхности примесных элементов и инородных включений, которые при нагреве могут взаимодействовать с матрицей с образованием легкоплавких составляющих и приводить к хрупкому разрушению.

Допустимые температуры эксплуатации (10 1 –10 4 ч) платиновых металлов, сплавов и материалов
при напряжениях 0,1–10 МПа

Цветные металлы: особенности применения и обработки

На сегодняшний день цветные металлы имеют огромное значение для производства любого типа техники. Металл является химически простым веществом, обладающим такими характеристиками, как ковкость, теплопроводность, электропроводность; внешне отличается особым блеском. Существует несколько классификаций металлов, основными группами металлов являются следующие:

  • Черные металлы (железо и его сплавы);
  • Цветные металлы (все остальные металлы и сплавы, за исключением железа);
  • Благородные или драгоценные металлы (серебро, золото, платина и остальные металлы платиновой группы);
  • Легкие металлы (имеющие низкую плотность);
  • Тяжелые металлы (цветные металлы, обладающие плотностью выше, чем железо).

Цветные металлы — техническое название всех металлов и их сплавов (кроме железа и его сплавов, называемых черными металлами). Термин в русском языке соответствует термину в европейских языках. Во многих других языках цветные металлы называются термином

В науке принята условная классификация цветных металлов, по которой они разделены по различным признакам, характерным для той или иной группы:

  • легкие металлы (алюминий, титан, магний),
  • тяжелые цветные металлы (медь, свинец, цинк, олово, никель),
  • благородные металлы (в т. ч. платиновые металлы),
  • тугоплавкие металлы,
  • рассеянные металлы,
  • редкоземельные металлы,
  • радиоактивные металлы.

Цветные металлы весьма востребованы в нашей стране, их производство широко распространено во всех регионах.

Цветная металлургия — отрасль металлургии, которая включает добычу, обогащение руд цветных металлов и выплавку цветных металлов и их сплавов. Различают металлургию легких металлов и металлургию тяжелых металлов.

На территории России сформировано несколько основных баз цветной металлургии. Различия их в специализации объясняются несхожестью географии легких металлов (алюминиевая, титано-магниевая промышленность) и тяжелых металлов (медная, свинцово-цинковая, оловянная, никель-кобальтовая промышленности).

Основные цветные металлы

Алюминий — это цветной металл, который обладает высокой электропроводностью, хорошей пластичностью, но имеет низкие механические свойства. Различают алюминий первичный и вторичный.

Медь — это металл, который является наиболее распространенным среди цветных, обладающим высокой пластичностью, электропроводностью и теплопроводностью. Медь хорошо сплавляется со многими металлами, образуя сплавы, которые широко используются в машиностроении.

Цинк — это цветной металл, который при обыкновенной температуре хрупок, но при нагреве до 100-150 градусов хорошо куется и прокатывается. Цинк устойчив против коррозии, однако разрушается под действием кислот и щелочей. Температура плавления — 419 градусов.

Применение цветных металлов

В современной технике объем применения цветных металлов и сплавов на их основе непрерывно растет. В связи с бурным развитием авиастроения, ракетной и атомной техники, химической промышленности в качестве конструкционных материалов в настоящее время стали применять такие металлы (и сплавы на их основе), как титан, цирконий, никель, молибден и даже ниобий, гафний и др.

Области применения отдельных цветных металлов и сплавов на их основе весьма разнообразны.

Медь и ее сплавы широко используют в химическом машиностроении, для изготовления трубопроводов самого различного назначения, емкостей, различных сосудов в криогенной технике и т. п.

Алюминий и его сплавы применяют для изготовления различных емкостей в химической и пищевой промышленности. Сплавы на основе алюминия широко применяют для самолетов, ракет, судов, в строительстве и т. п. в связи с их сравнительно высокой прочностью при малой плотности, высокой коррозионной стойкостью в некоторых агрессивных средах и высокими механическими свойствами при низких температурах.

Особенности цветных металлов

1. Некоторые металлы (медь, магний, алюминий) обладают сравнительно высокими теплопроводностью и удельной теплоемкостью, что способствует быстрому охлаждению места сварки, требует применения более мощных источников теплоты при сварке, а в ряде случаев предварительного подогрева детали.

2. Для некоторых металлов (медь, алюминий, магний) и их сплавов наблюдается довольно резкое снижение механических свойств при нагреве, в результате чего в этом интервале температур металл легко разрушается от ударов, либо сварочная ванна даже проваливается под действием собственного веса (алюминий, бронза).

3. Все цветные сплавы при нагреве в значительно больших объемах, чем черные металлы, растворяют газы окружающей атмосферы и химически взаимодействуют со всеми газами, кроме инертных. Особенно активные в этом смысле более тугоплавкие и химически более активные металлы: титан, цирконий, ниобий, тантал, молибден. Эту группу металлов часто выделяют в группу тугоплавких, химически активных металлов.

Особенности обработки цветных металлов

Цветные металлы прочны и долговечны, способны переносить высокие температуры. Недостаток только один — способность корродировать и разрушаться под воздействием кислорода .

Одним из самых эффективных методов защиты цветного металла от атмосферной коррозии считается нанесение защитных лакокрасочных материалов. Существуют три группы средств для защиты металлических поверхностей: грунтовки, краски и универсальные препараты «три в одном». Грунтовка — незаменимое средство борьбы с атмосферным окислением, одно- или двухслойное грунтование производится перед окрашиванием, помимо защитных свойств сообщая финишному покрытию лучшую адгезию к основанию. При выборе состава важно знать, что для разных металлов используются разные грунтовки

Для алюминиевых оснований используют специальные грунтовки на цинковой основе либо уретановые краски. Медь, латунь и бронзу обычно не красят — эти металлы поставляются на рынок с заводской обработкой, защищающей поверхность и подчеркивающей ее красоту. Если же целостность такого «фирменного» покрытия со временем нарушается , его лучше полностью удалить с помощью растворителя , после чего основание следует отполировать и покрыть эпоксидным или полиуретановым лаком.

Другие статьи по сходной тематике

Основные понятия о токарной обработке и токарных станках.

Стали марок AISI 409, 430, 439 — аналоги отечественных марок 08×13, 12×17 и 08×17Т

Гидравлические гильотинные ножницы, гильотинные ножницы с ЧПУ для раскроя и обработки листовых материалов.

Правила нанесения обозначений шероховатости поверхностей на чертежах

Металл | Металлы

Металл — вещество, обладающее и сочетающее в себе такие качества, как: металлический блеск, ковкость, эластичность, теплопроводность, электропроводность, твердость, долговечность.

Металл это основное понятие, которое сочетает и несет в себе всю суть и важность металлургии, то есть металлы это обобщающее понятие семидесяти процентов периодической системы Д.И.Менделеева.

Общие и химические понятия

С точки зрения химии металлы характеризуют легкой отдачей электронов и образованием положительно заряженных ионов. В свободном состоянии металлы считаются восстановителями. Их способность к восстановлению неодинакова и определяется размещением в электрохимическом ряду. Разделение в электрохимическом ряду происходит в порядке их убывания и возможности к восстановлению окислительных свойств их ионов.

Металл

В быту человека металл имеет широкое применение и используется им как основа, оболочка или составляющие элементы всех продуктов человеческой жизнедеятельности. В наше время изучено и известно 85 элементов и соединений, относящихся к металлам.

Читать еще:  Кто придумывает названия цветов типа «Голубая ФЦ» или «Марсала»?

Виды металлов складываются в несколько подгрупп:

1)черные: железо, сплавы на основе железа;

2) цветные: медь, алюминий, сплавы на основе меди и алюминия, олово, цинк, свинец, бронза, серебро, золото, магний и другие виды.

Сплавами металлов можно назвать сложные вещества, извлекаемые путем смешивания одного металла с другим, либо металла с неметаллическими элементами.

Основные свойства металлов и их понятия

Наиболее значимые для человека свойства металлов:

Прочность – свойство металла и его сплавов не разрушаться и воспринимать воздействия внешних сил.

Твердость – свойство металла не поддаваться внедрению в него постороннего более твердого тела.

Ударная вязкость – сопротивление металла при ударе к разрушению, дроблению и расколу.

Ковкость – возможность подвергаться обработке и изменению формы при ударных нагрузках большой площади либо обработки давлением.

Жидкотекучесть – это свойство металла в жидком расплавленном виде заполнять форму по всем её частям и давать плотные отливки с точной формой матрицы.

Свариваемость – это свойство металла технологическое, означающее его способность при сварке образовывать крепкое сварное соединение, надежное в эксплуатации.

Податливость – это свойство металла получать правильные формы, размеры и шероховатость поверхности при обработке шлифующими и режущими инструментами.

Классификация и деление металлов в зависимости от температуры плавления

Легкосплавные – это металлы, температура плавления которых до 1539С. К таким металлам относят: ртуть 38,9 С°, галлий 29,78 С°, цезий 28,5 С° и т.д.

Тугоплавкие – это металлы, температура плавления которых более 1539С. К таким металлам относят: хром 1890С, молибден 2620С, и т.д.

Незаменимая часть истории. Благородные металлы.

На протяжении многих веков считалось, что металлы делятся на семь видов: золото, серебро, ртуть, медь, железо, олово, свинец. Серебро с золотом, не меняющиеся от воздействия высоких температур воздуха и влаги, были названы совершенными, благородными металлами. Металл, который от воздействия воздуха и воды теряет свои свойства, металлический блеск, покрываясь налетом, и при прокалке превращается в окалину, был обречен называться неблагородным и несовершенным.

Данное деление металлов применяется и по сей день, но с условием, что в процессе времени к золоту и серебру прибавились платина и четыре её сопутствующих вида: родий, палладий, осмий, иридий. Благородные металлы имеют очень маленькую долю от массы металлов всех видов. Обычно в природе они встречаются человеку в самородном виде. Небольшим исключением является серебро которое встречается как в виде самородков так и в виде соединений.

Очень интересен состав самородной платины. Так как платина содержит в себе около 20% железа и других металлов: родий, палладий, осмий, иридий, медь, никель, рутений. По подобию золота самородная платина разделяется на рассыпные и коренные месторождения. Коренное место рождение есть и в России и находится на Урале. Оно представляется монолитом Дунита это изверженная горная порода, состоящая из Fe и Mg с примесью железняка. В этом монолите и содержаться включения самородной платины в зерновом виде. Под воздействием внешних природных факторов монолитные породы превращаются в песок. Вода высвобождает зерновые включения платины и разносит её по долинам, оврагам, дну ручьев и рек. Именно таким образом происходит образования рассыпчатых месторождений платины. Добыча благородных металлов в промышленном масштабе происходит с помощью добычи полиметаллических руд, имеющих в составе малые количества серебра, золота, платины, палладия.

История благородных металлов является самой великой и интересной из исторических глав материальной культуры. Ведь именно с применения благородных металлов и имел свое зарождение и начало быт человечества. Много веков золото служило валютой для обмена. А из меди и бронзы делали первые орудия труда. Мало что изменилось и по сей день, сегодня из золота и серебра, как и тысячи лет назад, делают украшения. Золото является самой надежной фундаментальной валютой, которой поддерживают свой статус и страхуют себя все мировые государства.

Металл, видение астрологов и алхимиков

Металл — как символ космической энергии. Древние астрологи считали, что количество видов металлов не превышало числа планет и равнялось семи. Металлы в астрологическом понятии назывались «спрятанные в теле земли планеты». А уже в свою очередь, эти семь планетарных металлов образуют сплавы других. Они считали, что эти семь видов металлов характеризуют каждую из планет и группируются по восходящей прогрессии к Солнцу.

Расплавленный металл также является алхимическим символом. К примеру, ртуть – жидкий металл как состояние огня и воды.

Со слов древних астрологов и алхимиков, соответствие металлов по отношению к планетам исчисляется с высших к низшим: золото – Солнце, серебро – Луна, ртуть – Меркурий, Медь – Венера, железо – Марс, олово – Юпитер, свинец – Сатурн. При этом древние считали и ассоциировали производство металла с адским огнем, а с другой стороны процесс его выплавки это очищение огнем.

Культурное значение металла

Металл – это слово, как и непосредственно сам материал сыграли очень большую роль и дали очень большой потенциал развитию и образованию мировой культуры и её видов.

За всю историю мировой культуры было написано множество литературных произведений, сыграно огромное количество спектаклей, снято множество кинофильмов, упомянуто в различных религиозных писаниях, культурных направлениях. Основу всему этому составу, точкой отрыва послужил именно металл.

Существует даже музыкальное направление, именованное как «металл». Представители этого направления назвали его таким из-за мелодичности звучания инструментов в своих произведениях. Присущим этим произведениям жесткость и тяжесть, ритмичность игры на инструментах схожа с работой кузнецов. Металлисты даже создали свой стиль одежды. В его состав входят жесткие формы. Одежда выполнена из грубой кожи и в основном черного цвета. Декорирование одежды делается при помощи блестящих хромированных металлических вставок, кнопок, колец, цепей, цвет и блеск которых не оставляет равнодушным ни одного человека и символизирует собой металл.

Основные ассоциации со словом металл

У большинства людей слово металл ассоциируется со словом железо. Что же такое железо?

Железо – это металл, ковкий, серебристо-белого цвета, имеет высокую химическую реакционную способность: оно быстро коррозирует при воздействии высоких температур или при повышенной влажности воздуха. Железом обычно именуют его сплавы с содержанием примесей не более 0,8%, которые дают ему возможность сохранять мягкость и пластичность. В промышленности сплавы железа содержат в себе углерод: в стали до 2,14% в чугуне до 6,67% углерода. Специфические свойства железа делают его самым важным для быта человека. В природе железо очень редко встречается в чистом виде. Распространенность железа в земной коре занимает четвертое место среди металлов. Так же считается, что земное ядро в основном состоит из железа. На производство железа направленно 95% производственного комплекса земли. Такая доля характеризуется широтой применения железа в быту человека.

Глава 1. Металлические материалы / Глава 1.1. Основные сведения о производстве металлов и сплавов / Глава 1.1.5. Сплавы тугоплавких и благородных металлов

Золото и серебро, а также платиновые металлы (платину, палладий, осмий, иридий, рутений, родий) относят к группе благородных металлов. Эти металлы химически инертны.

Иридий выпускается 2 марок: И99,9 (иридия не менее 99,90 %) и И99,8 (иридия не менее 99,80 %) и Рд99,8 (родия не менее 99,80 %). Эти металлы применяют в аппаратостроении, приборостроении и атомной промышленности.

Платина и платиновые сплавы представлены 3 марками платины Пл99,93, Пл99,9 и Пл99,8 (соответственно, 99,93, 99,90 и 99,80% платины) и 24 марками сплавов на основе платины.

Палладий и палладиевые сплавы: выпускают палладий 2 марок (Пд99,9 и Пд99,8 с 99,9 и 99,8 % палладия соответственно) и сплавы 7 марок.

В зависимости от химического состава установлены 2 марки золота (Зл999,9 и Зл999) и 37 марок сплавов на основе золота.

Широкое применение находят тугоплавкие металлы — вольфрам, рений, ниобий, тантал, молибден и др.

Самый тугоплавкий металл — вольфрам с температурой плавления 3 410°С. Его сплавы используют в электротехнике, в ракетостроении, атомной энергетике и других отраслях промышленности.

Рений — второй после вольфрама тугоплавкий металл, увеличивает пластичность, понижает температуру перехода в хрупкое состояние, улучшает обрабатываемость давлением и снижает электропроводность сплавов. Он используется в электровакуумных приборах.

Ниобий и его сплавы, как сверхпроводящие материалы, применяют в химической промышленности, ракетной технике, сверхмощных атомных ускорителях.

Тантал и его сплавы с вольфрамом, ниобием, молибденом имеют высокую химическую стойкость в сильных кислотах, в расплавах щелочных металлов. Применяют в электровакуумной и химической промышленности, а также в атомной энергетике.

Молибден является легирующим элементом в сплавах, он образует высокодисперсные карбиды, упрочняющие сплавы.

Порошковые материалы изготовляют из металлического порошка или из его смеси с неметаллическим порошком.

Методы порошковой металлургии имеют преимущества по сравнению с обычными методами производства материалов и изделий: снижение температуры процесса при замене плавления спеканием, возможность получения сплавов (композиций) из элементов, не сплавляющихся между собой или значительно отличающихся по температурам плавления или плотностям, возможность получения изделий сложной формы и точных размеров, а также изделий с особой структурой.

По назначению порошковые материалы делятся на следующие группы:

  • твердые спеченные сплавы для режущего и горнодобывающего инструмента, для изделий конструкционного назначения;
  • материалы электротехнического назначения;
  • фрикционные и антифрикционные материалы;
  • пористые материалы;
  • жаропрочные и жаростойкие материалы.

Изделия из порошковых материалов изготовляют в следующей технологической последовательности: получение, смешивание и прессование металлических порошков; спекание порошковой формовки.

Изготовление металлических порошков — важная операция, от которой зависят их химический состав, физические и технологические свойства. Химический состав порошков определяется содержанием основных компонентов, а также газов и примесей. Физические свойства определяются размером частиц порошка, их формой, магнитными и другими свойствами. Технологические свойства порошков характеризуются их насыпной плотностью, прессуемостью, уплотняемостью и формуемостью.

Промышленность выпускает различные металлические порошки: железные порошки (ПЖ1 — ПЖ5), медные порошки (ПМА, ПМ, ПМС-2, ПМС-К и др.), кобальтовые порошки (ПК-1 и ПК-2), никелевые порошки (ПНЭ1, ПНК1Л6 и др.), цинковые порошки (ПЦВ, ПЦО, ПЦЗ и др.), легированные порошки (Р6М5КМП, МП, ПХ18Н15-1, Р9М4К8МП и др.), порошки драгоценных металлов, алюминиевые порошки (САП-1, САП-2, САП-3, С’АП-4, ПАП-1, ПАП-2 и др.), наплавочные порошки, твердые спеченные сплавы (ВК6, ВК8, ВК15, ВК8-В, ВК20-КС, ТТ7К12, Т30К4, ТТ10К8-Б и др.).

Компания Укринтех предлагает качественные и недорогиеоптико-эмиссионные спектрометры от производителя MetalPower по самым выгодным ценам.

Благородные металлы — Реферат

Очень долгое время, почти до конца XVIII в., считалось, что существует всего 7 металлов: золото, серебро, ртуть, медь, железо, олово, свинец. Золото и серебро, не изменяющиеся при действии воздуха, влаги и высокой температуры, получили название совершенных, благородных металлов. Прочие же металлы, которые под действием воды и воздуха теряют металлический блеск, покрываясь налетом, а после прокаливания превращаются в рыхлые, порошкообразные «земли» или «окалины» (оксиды), были названы несовершенными, неблагородными.

Читать еще:  Прочностные свойства сталей обыкновенного качества

Дополнительная информация

    Руководитель: Астафьев Учебное заведение: НТИ (ф) УрФУ Скачать реферат: Реферат — «Благородные металлы»

История развития производства

Такое деление металлов нередко применяется и в наши дни, но с тем отличием, что к двум благородным металлам древнего мира и средневековья — золоту и серебру — на рубеже XVIII и XIX вв. прибавились платина и четыре ее спутника: родий, палладий, осмий, иридий. Рутений, пятый спутник платины, был открыт только в 1844 г.

Благородные металлы очень мало распространены в природе. В природе благородные металлы встречаются почти всегда в свободном (самородном) состоянии. Некоторое исключение составляет серебро, которое находится в природе и в виде самородков, и в виде соединений, имеющих значение как рудные минералы (серебряный блеск, или аргентит Ag2S, роговое серебро, или кераргирит AgCl, и др.).

История благородных металлов — одна из самых интересных глав истории материальной культуры. По мнению многих ученых, золото было первым металлом, который человечество начало использовать для изготовления украшений, предметов домашнего обихода и религиозного культа. Золотые изделия были найдены в культурных слоях эпохи неолита (V-IV тысячелетия до н.э.).

И в древности, и в средние века основными областями применения золота и серебра были ювелирное дело и изготовление монет. При этом недобросовестные люди, как ремесленники, так и лица, стоявшие у власти, прибегали к обману, не гнушались сплавлением драгоценных металлов с более дешевыми — золота с серебром или медью, серебра с медью. Хорошо известен рассказ древнегреческого писателя Плутарха о том, как сиракузский царь Гиерон II поручил Архимеду узнать, нет ли примеси серебра в золотой короне, изготовленной по заказу царя.

Ученый, пользуясь открытым им законом, взвесил корону сначала на воздухе, а затем в воде и вычислил ее плотность. Она оказалась меньше, чем у чистого золота. Так был разоблачен корыстный ювелир.

Способ испытания золотых и серебряных изделий (особенно монет) на чистоту был известен уже в глубокой древности. Он состоял в сплавлении пробы металла со свинцом и затем в окислительном обжиге жидкого сплава в сосуде из пористого материала (костной золы). При этом свинец и другие неблагородные металлы окислялись. Расплавленная смесь оксида свинца PbOс другими оксидами всасывалась пористым материалом, а благородный металл оставался неокисленным. Зная массу взятой пробы и массу выделенного из него «королька» золота или серебра, определяли содержание благородного металла в пробе.

Совершенно очевидно, что Архимед не мог воспользоваться этим приемом для разрешения заданного ему вопроса; к тому же Гиерон II запретил повреждать корону. А пробирных игл в то время в Древней Греции не было, как не были известны и способы разделения золота и серебра.

Пробирные иглы изготовляют из золота и меди (или серебра и меди), взятых в различных отношениях, заданных заранее. На отполированной поверхности пробирного камня (черного кремнистого сланца) наносят черту сперва испытуемым изделием, затем пробирной иглой, наиболее близкой к нему по цвету, а потом иглами соседних составов. Сравнивая окраску всех этих черт, можно определить приблизительно содержание благородного металла в испытуемом предмете. Пробирные иглы применялись уже в Древней Индии. В Западной Европе появились около XIV в.

И в древности, и в средние века подделка золота и серебра была широко распространена. Несмотря на жестокие наказания, которые угрожали фальсификаторам монеты (начиная с отсечения кисти и кончая сожжением заживо), «проклятая страсть к золоту» брала верх. Та же страсть была движущей силой алхимии .

Называя главные моменты ранней стадии периода первоначального накопления капитала, К.Маркс прежде всего отмечает открытие золотых и серебряных рудников в Америке. Были найдены богатые месторождения золота в Мексике (1500), в Перу и Чили (1532), в Бразилии (1577). Серебряные руды были обнаружены во второй трети XVI в. в Мексике и Перу. В XVI в. большие количества золота и серебра стали поступать из Нового Света в Европу.

Первую в России золотую россыпь обнаружил весной 1724 г. крестьянин Ерофей Марков в районе Екатеринбурга. Ее эксплуатация началась только в 1748 г. Добыча уральского золота медленно, но неуклонно расширялась. В начале XIX в. были открыты новые месторождения золота в Сибири. С 1821 по 1850 г. в России было добыто 3293 т золота, т.е. почти в 3,9 раза больше, чем во всех остальных странах мира (893 т).

С открытием богатых золотоносных районов в США (Калифорния, 1848 г.; Колорадо, 1858 г.; Невада, 1859 г.; Аляска, 1890 г.), Австралии (1851), Южной Африке (1884) Россия утратила свое первенство в добыче золота, несмотря на то что были введены в эксплуатацию новые месторождения, главным образом в Восточной Сибири.

Добыча золота велась в России полукустарным способом, разрабатывались преимущественно россыпные месторождения. Свыше половины золотых приисков находилось в руках иностранных монополий. Самородная платина, по имеющимся данным, была известна в Древнем Египте, Эфиопии, Древней Греции и в Южной Америке. В XVIII в. испанские колонизаторы обнаружили в золотых россыпях в Колумбии самородки тяжелого тускло-белого металла, который не удавалось расплавить. Его назвали платиной (уменьшительное от исп. рlаtа — серебро). В 1744 г. испанский путешественник Антонио де Ульоа привез образцы платины в Лондон. Ученые очень заинтересовались новым металлом. В 1789 г. А. Лавуазье включил платину в список простых веществ. Но вскоре оказалось, что самородная платина содержит другие, еще неизвестные металлы.

В 1803 г. английский физик и химик У.Уолластон открыл в ней палладий, получивший свое название от малой планеты Паллады, и родий, названный так по розово-красному цвету его солей (от греч. rhodon- роза). В 1804 г. английский химик С.Теннант, исследуя остаток от растворения самородной платины в «царской водке» (смесь азотной и соляной кислот), нашел в нем еще два новых металла. Один из них — иридий — получил название вследствие разнообразия окраски его солей (от греч, iris- радуга). Другой был назван осмием по резкому запаху его оксида OsO4(от греч. osme- запах). Наконец, в 1844 г. профессор Казанского университета К.К. Клаус открыл еще один спутник платины — рутений (от лат. Rhuthenia- Россия).

Материалом для исследования К.К. Клауса служили остатки от аффинажа (очистки) уральской самородной платины. Она была открыта в золотоносных песках Верх-Исетского горного округа в 1819 г. Вскоре и в других местах было найдено «белое», «лягушечье» золото или «серебрецо». В 1823 г. В. В. Любарский показал, что все эти находки не что иное, как самородная платина.

В 1824 г. на Урале было добыто 33 кг самородной платины, а в 1825 г. уже 181 кг. Незадолго перед этим (в 1823 г.) был уволен в отставку министр финансов Д.А. Гурьев, приведший Россию на грань денежной катастрофы. Его преемник Е.Ф.Канкрин, чтобы спасти положение, наметил в числе прочих мер чеканку платиновой монеты. В 1826 г. горные инженеры П.Г.Соболевский и В.В. Любарский разработали технологию получения ковкой платины.

Способ этот состоял в следующем: губчатую платину, полученную прокаливанием «нашатырной платины», т.е. гексахлорплатината аммония, набитую в цилиндрические железные формы, сильно сдавливали винтовым прессом и полученные цилиндры выдерживали при температуре белого каления около 36 ч, после чего из них отковывали полосы или прутки. К концу 1826 г. этим способом было получено 1590 кг ковкой платины. Ранее по способу парижского ювелира Жаннетти платину сплавляли с мышьяком. Сильным прокаливанием на воздухе мышьяк выжигали из полученных слитков, после чего их подвергали горячей ковке. Этот способ был крайне опасен для здоровья и сопряжен с большими потерями платины. За рубежом его заменил способ У.Уолластона, который хранился в тайне и был опубликован только в 1829 г. В основных чертах он схож со способом П.Г.Соболевского. Получение изделий посредством прессования и последующего спекания порошков металлов, карбидов и других соединений широко применяется под названием металлокерамики или порошковой металлургии.

В 1828 г. был начат выпуск платиновой монеты достоинством в 3,6 и 12 руб. Но в 1845 г. царское правительство решило прекратить ее чеканку, а в 1862 г. продало за бесценок иностранной фирме остатки от аффинажа платины, накопившиеся на Монетном дворе.

В конце XIX в. спрос на платину сильно возрос, в частности, вследствие ее применения как катализатора в производстве серной кислоты. Однако владельцы уральских платиновых приисков, которые поставляли тогда около 95% мировой добычи платины, вместо того чтобы наладить аффинаж платины и производство платиновых изделий и препаратов, предпочли продавать сырую платину за границу. Так, Россия, будучи монополистом по добыче самородной платины, оказалась вынужденной покупать за рубежом платиновую посуду, проволоку и др. Только в 1914 г. был запрещен вывоз сырой платины, а в 1915-1918 гг. построен платино-аффинажный завод в Екатеринбурге.

Вскоре (в 1918 г.) была введена государственная монополия на добычу, очистку и куплю-продажу драгоценных металлов. Тогда же по инициативе проф. Л. А.Чугаева был основан при Академии наук Институт по изучению платины и других благородных металлов (в 1934 г. вошел в состав Института общей и неорганической химии АН СССР). Его директорами были Л.А.Чугаев и Н.С.Курнаков.

В годы первой мировой и гражданской войн добыча золота и платины сильно упала. Но уже в 1921 г. Совнарком РСФСР издал постановление «О золотой и платиновой промышленности». В нем указывалось, что месторождения золота и платины составляют собственность государства, отмечалось особо важное значение их разработки и предусматривался ряд мер, направленных на восстановление и развитие добычи этих металлов. Так была возобновлена работа золотых и платиновых приисков, но с применением механизации в невиданных ранее масштабах. За годы Советской власти были открыты и введены в эксплуатацию месторождения золота в Сибири, Казахстане, Приморье и других районах СССР. Была налажена комплексная переработка медно-никелевых сульфидных руд Заполярья с извлечением из них драгоценных металлов.

В капиталистических странах (по оценке на 1970 г.) общая добыча золота составляла 1293,8 т, в том числе 999,7 т приходится на Южно-Африканскую Республику, 74,2 т — на Канаду, 52,9 т — на США, 21,5 т — на Австралию, остальное — на Японию, Мексику и Индию.

Главные зарубежные поставщики платины и ее спутников — ЮАР, Канада, Колумбия, США. Относительная стоимость платиновых металлов на рынках Запада (по данным конца 1960 г. составляла, если принять стоимость золота за единицу:

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector