Yoga-mgn.ru

Строительный журнал
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Особенности, схемы подключения и преимущества ламп ДРЛ

Схема подключения лампы ДНАТ

Пускорегулирующая аппаратура для натриевых ламп (ДНАТ)

Для зажигания газоразрядных ламп, в том числе и натриевых, потребуется специализированное оборудование ПРА (пускорегулирующая аппаратура), ведь непосредственное подключение ламп ДНАТ в сеть исключено.

Пускорегулирующая аппаратура для натриевых ламп (ДНАТ) включает в себя:

  1. ИЗУ (импульсное зажигающее устройство), обеспечивающее запуск газоразрядной лампы. В момент ее включения, ИЗУ пропускает мощные импульсы высокого напряжения на электроды, благодаря чему происходит пробой в газовой смеси колбы и зажигание дуги. После этого выдача ВВ импульсов прекращается, впрочем, как и влияние импульсного зажигающего устройства на работу лампы;
  2. Дроссель. Хотя электронные пускорегулирующие аппараты считаются более продуктивными, их стоимость значительно дороже импульсных. Поэтому самым распространенным и востребованным для подключения лампы ДНАТ является именно индуктивный дроссель. Электрический дроссель представлен в виде небольшого блока, который должен отвечать потребляемой мощности лампы. Он ограничивает и стабилизирует подачу тока, оказывает сильное противодействие всяким его изменениям, поддерживает убывающий ток и препятствует его нарастанию, тем самым обеспечивая длительные эксплуатационные свойства лампы и высокие показатели светоотдачи.

Таким образом, балласт обеспечивает стандартный разогрев и эффективную работу натриевых ламп на весь период заявленного производителями срока.

ДНАТ подключение. Схема

Возможны разные методы соединения газоразрядных ламп, в данном случае ДНАТ: производители ИЗУ могут предложить конструкцию с двумя и даже тремя контактами, с параллельным, последовательным и даже полупараллельным типом, что значительно меняет схему ДНАТ подключения. Она изображается почти на всех устройствах такого типа, что исключает ошибочность монтажа.

Схема подключения лампы ДНАТ с трех контактным ИЗУ

Схема подключения лампы ДНАТ с двух контактным ИЗУ

Схема подключения лампы ДНАТ, что изображена на первом рисунке, рассчитана на наличие в ней компенсирующего конденсатора, подключающегося параллельно источнику питания. Это конденсатор сухого типа С, который предназначен для компенсации индуктивной составляющей системы – уменьшения потребляемой реактивной мощности, снижения общего потребления электроэнергии, а также для продления эксплуатационного срока готового продукта.

К примеру, чтобы выполнить подключение лампы ДНАТ мощностью 250 Вт (3А) предусмотрена емкость компенсирующего конденсатора (показатели рабочего напряжения — 250В) всего 35 мкФ. Эта емкость может быть сформирована с помощью нескольких параллельно соединенных между собой конденсаторов.

Иногда показатели емкости могут быть предусмотрены заводом-изготовителем, но крайне большое увеличение может привести к возникновению резонанса в цепи, а, следовательно – к неэффективной работе готового изделия.

Если ДНАТ подключение происходит самостоятельно, следует учесть допустимое значение расположения ИЗУ. Оно должно находиться как можно ближе к цоколю продукта, при этом длина соединительных проводов в этой зоне должна быть минимальной (допустимо-максимальная величина составляет 1.5м).

Чтобы обеспечить качественное и безопасное подключение применяют высоковольтные провода зажигания специального назначения.

Отзывы

Вообще-то лампа будет хорошо работать при любом подключении фазы и ноля к ее цоколю.

Но есть нюанс по безопасности.
И тут Вы правы.
На рисунках нет патрона, в который вкручивается лампа.
Для наглядности я его на схеме опустил.
Если предположить, что вы выкручиваете перегоревшую лампу и при этом:

1.фаза подключена к резьбовой части патрона (как на рисунках)
2.Вы забыли отключить выключатель, либо он размыкает ноль, а не фазу

То при касании цоколя Вас хорошо стукнет.
А если фазу подключить к центральному контакту цоколя, то шанс поражения током минимален.
Но лично я бы, выкручивал лампу, держась за ее стеклянную колбу. При выключенном питании. И не думал бы о подключенной фазе.
Но в любом случае спасибо за уточнение.

Здравствуйте, не подскажите схему подключения для лампы низкого давления Philips sox-e 131w?

при использовании обычной схемы с двухконтактным изу начинает дергаться, но не разгорается

Имеется дроссель ДНАТ в сборе с ИЗУ (трех контактным) на 1000вт, могу я к нему подключить лампу ДНАТ на 600 вт? Или нужно покупать дросcель ДНАТ на 600 вт?

Схемы включения газоразрядных ламп

Искусственные источники освещения, использующие для выработки световых волн электрический разряд газовой среды в парах ртути, называют газоразрядными ртутными лампами.

Газ, закачанный в баллон, может находиться под низким, средним или высоким давлением. Низкое давление применяется в конструкциях ламп:

Высокое давление используется в лампах:

дуговой ртутной люминофорной (ДРЛ);

металлогенной ртутной с излучающими добавками (ДРИ) галогенидов металлов;

дуговой натриевой трубчатой (ДНаТ);

дуговой натриевой зеркальной (ДНаЗ).

Их устанавливают в тех местах, где необходимо освещать большие территории с малыми затратами электроэнергии.

Устройство лампы, использующей четыре электрода, схематично показано на картинке.

Ее цоколь, как и у обычных моделей, служит для подключения к контактам при вкручивании в патрон. Стеклянная колба герметично защищает все внутренние элементы от внешних воздействий. В ней закачан азот и размещены:

электрические проводники от контактов цоколя;

два токоограничивающих сопротивления, вмонтированные в цепь дополнительных электродов

Горелка выполнена в форме герметичной трубки из кварцевого стекла с закачанным аргоном, в которую помещены:

две пары электродов — основной и дополнительный, расположенные на противоположных концах колбы;

небольшая капелька ртути.

Источником света ДРЛ является разряд электрической дуги в среде аргона, протекающий между электродами в кварцевой трубке. Он возникает под действием приложенного к лампе напряжения в два этапа:

1. первоначально между близкорасположенными основным и зажигающим электродами начинается тлеющий разряд за счет движения свободных электронов и положительно заряженных ионов;

2. образование внутри полости горелки большого количества носителей зарядов приводит к быстрому пробою среды азота и образованию дуги через основные электроды.

Стабилизация пускового режима (электрического тока дуги и света) требует времени порядка 10-15 минут. В этот промежуток ДРЛ создает нагрузки, значительно превышающие токи номинального режима. Для их ограничения применяется пускорегулирующее устройство — дроссель.

Излучение дуги в парах ртути имеет голубой и фиолетовый оттенок и сопровождается мощным ультрафиолетовым излучением. Оно проходит через люминофор, смешивается с образуемым им спектром и создает яркий свет, приближенный к белому оттенку.

ДРЛ чувствительна к качеству питающего напряжения, а при его снижении до 180 вольт тухнет и не зажигается.

Во время дугового разряда создается высокая температура, передающаяся всей конструкции. Она влияет на качество контактов в патроне и вызывает нагрев подключенных проводов, которые из-за этого используют только с термостойкой изоляцией.

При работе лампы давление газов в горелке сильно увеличивается и осложняет условия для пробоя среды, что требует повышения приложенного напряжения. Если питание отключить и подать, то сразу лампа не запустится: ей надо остыть.

Схема подключения лампы типа ДРЛ

Четырехэлектродная ртутная лампа включается в работу через дроссель и предохранитель.

Плавкая вставка защищает схему от возможных коротких замыканий, а дроссель ограничивает ток, проходящий через среду кварцевой трубки. Индуктивное сопротивление дросселя подбирается по мощности светильника. Включение лампы под напряжение без дросселя приводит к ее быстрому перегоранию.

Конденсатор, включенный в схему, компенсирует реактивную составляющую, вносимую индуктивностью.

Внутреннее устройство лампы ДРИ очень похоже на то, которое используется У ДРЛ.

Но в ее горелке введена определенная доза добавок из гапогенидов металлов индия, натрия, таллия или некоторых других. Они позволяют увеличить выделение света до 70-95 лм/Вт и более с хорошей цветностью.

Колба выполняется в форме цилиндра или эллипса, показанного на рисунке ниже.

Материалом горелки может быть кварцевое стекло или керамика, которая обладает лучшими эксплуатационными свойствами: меньшее затемнение и больший срок службы.

Форма горелки в виде шара, используемая в современных конструкциях, повышает светоотдачу и яркость источника.

Основные процессы, происходящие при выработке света ламп ДРИ и ДРЛ совпадают. Отличие состоит в схеме зажигания. ДРИ не может запуститься в работу от приложенного напряжения сети. Ей этой величины недостаточно.

Для создания дугового разряда внутри горелки необходимо к межэлектродному пространству приложить высоковольтный импульс. Его образование возложено на ИЗУ — импульсное зажигающее устройство.

Как работает ИЗУ

Принцип действия устройства создания высоковольтного импульса условно можно представить упрощенной принципиальной схемой.

Рабочее напряжения питания подводится на вход схемы. В цепочке диода D, резистора R и конденсатора C создается зарядный ток емкости. По окончании заряда через конденсатор выдается импульс тока сквозь открывшийся тиристорный ключ в обмотку подключенного трансформатора Т.

В повышающей напряжение выходной обмотке трансформатора создается высоковольтный импульс величиной до 2-5 кВ. Он поступает на контакты лампы и создает дуговой разряд газовой среды, обеспечивающий свечение.

Схемы подключения лампы типа ДРИ

Устройства ИЗУ выпускаются для газоразрядных ламп двух модификаций: с двумя или тремя выводами. Для каждого из них создается своя схема подключения. Она приводится прямо на корпусе блока.

При использовании двухконтактного устройства фаза сети через дроссель подключается к центральному контакту цоколя лампы и одновременно на соответствующий вывод ИЗУ.

Нулевой провод подводится на боковой контакт цоколя и свой вывод ИЗУ.

У трехконтактного устройства схема подключения нуля остается такой же, а подвод фазы после дросселя изменяется. Она подключается через два оставшихся вывода на ИЗУ, как показано на картинке ниже: вход на устройство осуществляется через клемму «В», а вывод на центральный контакт цоколя через — «Lp».

Таким образом, в состав пускорегулирующей аппаратуры (ПРА) для ртутных ламп с излучающими добавками входят в обязательном порядке:

импульсное зарядное устройство.

Компенсирующий величину реактивной мощности конденсатор может входить в состав ПРА. Его включение определяет общее снижение потребления энергии осветительным устройством и продление срока эксплуатации лампы при правильно подобранной величине емкости.

Ориентировочно ее значение в 35 мкФ соответствует лампам с мощностью 250 Вт, а 45 — 400 Вт. При завышенной емкости возникает резонанс в схеме, который проявляется «миганием» света лампы.

Читать еще:  Циркулярная пила по металлу, особенности и принцип работы

Наличие в работающей лампе импульсов высокого напряжения определяет использование в схеме подключения исключительно высоковольтных проводов минимальной длины между ПРА и лампой, не более 1-1,5 м.

Это разновидность описанной выше лампы ДРИ, внутри колбы которой частично нанесено зеркальное покрытие для отражения света, которое формирует направленный поток лучей. Он позволяет фокусировать излучение на освещаемый объект и снижать световые потери, возникающие из-за переотражений.

Внутри колбы этой газоразрядной лампы вместо ртути используются пары натрия, расположенные в среде инертных газов: неона, ксенона или других, либо их смесей. По этой причине их называют «натриевыми».

За счет такой модификации устройства конструкторам удалось придать им наибольшую эффективность работы, которая доходит до 150 лм/Вт.

Принцип действия ДНаТ и ДРИ один и тот же. Поэтому схемы подключения их одинаковы и при соответствии характеристик ПРА параметрам ламп их можно использовать для зажигания дуги в обеих конструкциях.

Однако производители металл галогенных и натриевых ламп выпускают пускорегулирующие устройства под конкретные виды своих изделий и поставляют их в едином корпусе. Эти ПРА полностью налажены и готовы к работе.

Схемы подключения ламп типа ДНаТ

В отдельных случаях конструкции ПРА для ДНаТ могут иметь отличия от представленных выше схем запуска ДРИ и выполняться по одной из трех нижеприведенных схем.

В первом случае ИЗУ включено параллельно контактам лампы. После зажигания дуги внутри горелки рабочий ток не течет через лампу (см принципиальную схему ИЗУ), что экономит потребление электричества. При этом дроссель испытывает воздействие высоковольтных импульсов. Поэтому он создается с усиленной изоляцией для защиты от зажигающих импульсов.

Из-за этого схема параллельного включения используется с лампами маленькой мощности и импульсом зажигания до двух киловольт.

Во второй схеме применяется ИЗУ, работающее без импульсного трансформатора, а высоковольтные импульсы вырабатывает дроссель специальной конструкции, имеющий отвод для подключения к контакту лампы. Изоляция обмоток этого дросселя также усиливается: она подвергается воздействию высоковольтного напряжения.

В третьем случае используется метод последовательного подключения дросселя, ИЗУ и контакта лампы. Здесь высоковольтный импульс от ИЗУ не поступает на дроссель, а изоляция его обмоток не требует усиления.

Недостаток этой схемы в том, что ИЗУ потребляет повышенный ток, за счет чего происходит его дополнительный нагрев. Это обуславливает необходимость увеличения габаритов конструкции, которые превышают размеры предшествующих схем.

Этот третий вариант конструкции наиболее часто используется для работы ламп ДНаТ.

Во всех схемах может быть использована компенсация реактивной мощности подключением конденсатора так, как показано в схемах подключения ламп ДРИ.

Перечисленные схемы включения ламп высокого давления, использующих газовый разряд для свечения, обладают рядом недостатков:

заниженный ресурс свечения;

зависимость от качества питающего напряжения;

шум работающего дросселя и ПРА;

повышенное потребление электричества.

Большая часть этих недостатков устраняется применением электронных пусковых аппаратов (ЭПРА).

Они позволяют не только экономить до 30% электроэнергии, но и обладают возможностью плавного регулирования освещенности. Однако, стоимость таких устройств пока еще довольно высокая.

Сравнительная характеристика различных типов газоразрядных ламп

Газоразрядные лампы сегодня – это самые яркие и довольно экономичные источники света широко применяемые как для создания качественного наружного, так и внутреннего освещения. Они часто применяются там, где нужен хороший световой поток и значительный срок эксплуатации. Например, для освещения стадионов и промышленных площадей, в системах для уличного освещения, для освещения растений в теплицах, в торговых залах и витринах, в архитектурном освещении.

Газоразрядные лампы обладают большим сроком эксплуатации в значительном диапазоне температур внешней среды, а также высокой световой отдачей. В нашей климатической зоне рационально применять для наружного и архитектурного освещения именно этот тип ламп, так как они могут функционировать при низких температурах, что отличает их от люминесцентных ламп.

Принцип действия газоразрядных ламп значительно отличается от ламп накаливания. Электрические разряды между электродами вызывают свечение наполнителя в разрядной трубке. Излучаемый лампой свет — это следствие происходящих в ней дуговых разрядов. Для ограничения тока и для зажигания всем газоразрядным лампам необходимы специальные ПРА.

Все газоразрядные лампы можно разделить на четыре основные группы:

Меньше распространены лампы в парах ксенона (ДКсТ).

Главным недостатком этих источников света являются заметные глазу пульсации светового потока, возникающие при питании ламп от сети переменного тока частотой 50 Гц. Однако, этого можно легко избежать при использовании в светильниках электронных пускорегулирующих устройств (ЭПРА).

Металлогалогенные лампы обладают ярким белым светом высокого качества и отличной цветопередачей. В связи с этим металлогалогенные лампы широко используются в осветительных установках различных коммерческих помещений, выставок, торговых центров, служебных помещений, гостиниц, ресторанов, в установках для подсветки рекламных щитов и витрин, для освещения спортивных сооружений и стадионов, для архитектурной подсветки зданий и сооружений.

Маркировка: Д – дуговая, Р – ртутная, И — йодидная.

Металлогалогенные лампы — это ртутные лампы высокого давления с добавками йодидов металлов или йодидов редкоземельных элементов (диспрозий (Dy), гольмий (Ho) и тулий (Tm) а также комплексные соединения с цезием (Cs) и галогениды олова (Sn). Эти соединения распадаются в центре разрядной дуги, и пары металла могут стимулировать эмиссию света, чьи интенсивность и спектральное распределение зависят от давления пара металлогалогенов.

Промышленность выпускает лампы мощностью 35, 70, 150, 250,400, 1000, 2000, 3500 Вт.

Преимущества металлогалогенных ламп:

  • длительный период эксплуатации (до 15000 часов);
  • очень высокая светоотдача (до 100лм/Вт);
  • отличный спектральный состав света;
  • нет необходимости утилизации.

Недостатки металлогалогенных ламп:

  • длительное зажигание и перезажигание;
  • отсутствие плавной регулировки освещения.

Частое кратковременное включение ламп высокого давления сокращает их срок службы. Это относится как к запуску ламп из холодного, так и из горячего состояния.

Световой поток практически не зависит от температуры окружающей среды (вне светильника). При низких температурах окружающей среды (до -50 °С) необходимо использовать специальные устройства зажигания.

Для оптических целей были разработаны короткодуговые металлогалогенные лампы HMI с малыми межэлектродными расстояниями. Они отличаются очень высокой яркостью. Поэтому они используются прежде всего для световых эффектов, как позиционные источники света и в эндоскопии.

Натриевые лампы высокого давления обладают высокой эффективностью, что позволяет экономить электроэнергию и сокращать затраты на эксплуатацию. Подходят для освещения складов, пешеходных зон, дорог, больших открытых пространств.

Маркировка: Д — дуговая; На — натриевая; Т — трубчатая; З — зеркальная.

Натриевые лампы высокого давления (ДНаТ) являются одной из самых эффективных групп источников видимого излучения: они обладают самой высокой световой отдачей среди всех известных газоразрядных ламп и незначительным снижением светового потока при длительном сроке службы. У этих ламп внутри стеклянной цилиндрической колбы помещается разрядная трубка из поликристаллического алюминия, инертная к парам натрия и хорошо пропускающая его излучение. Давление в трубке порядка 200 кПа. Однако чрезвычайно желтый свет и соответственно низкий индекс цветопередачи (Ra=25) позволяют использовать их в помещениях, где находятся люди, лишь в комбинации с лампами других типов.

Промышленность выпускает лампы мощностью 35, 50, 70, 150, 250, 400, 1000 Вт.

Преимущества натриевых ламп:

  • длительный период эксплуатации (10000 — 15000 часов);
  • очень высокая светоотдача (100 — 130лм/Вт);
  • нет необходимости утилизации.

Недостатки натриевых ламп:

  • низкий индекс цветопередачи.

Натриевые лампы низкого давления по сей день достаточно широко распространены в Европе. Одним из их применений является подсветка автомобильных тоннелей в транспортных развязках. Их монохроматический желтый свет (линия натрия 590 нм) обеспечивает контрастную видимость объектов даже в густом тумане и легкой дымке.

Лампы низкого давления отличаются рядом особенностей. Во-первых, пары натрия весьма агрессивны по отношению к обычному стеклу. Из-за этого внутренняя колба обычно выполняются из бросиликатных стекол. Во-вторых, эффективность НЛНД сильно зависит от температуры окружающей среды. Для обеспечения приемлемого температурного режима колбы последняя помещается во внешнюю стеклянную колбу, играющую роль «термоса».

Ртутные лампы высокого давления обладают высокой надежностью, хорошей цветопередачей, позволяют снизить затраты на установку и техническое обслуживание. Применяются для внутреннего и наружного освещения коммерческих и производственных объектов, для декоративного и охранного освещения.

Маркировка: Д — дуговая Р — ртутная Л — лампа В — включается без ПРА.

Люминесцентные ртутно-кварцевые лампы (ДРЛ), состоят из стеклянной колбы, покрытой изнутри люминофором, и кварцевой трубки, размещенной в колбе, которая заполнена парами ртути под высоким давлением. Для поддержания стабильности свойств люминофора стеклянная колба заполнена углекислым газом. Под влиянием ультрафиолетового излучения, возникающего в ртутно-кварцевой трубке, светится люминофор, придавая свету определенный синеватый оттенок, искажая истинные цвета. Для устранения этого недостатка в состав, люминофора вводятся специальные компоненты, которые частично исправляют цветность; эти лампы получили название ламп ДРЛ с исправленной цветностью.

Промышленность выпускает лампы мощностью 50, 80, 125, 250,400,700,1000 и 2000 Вт.

Преимущества ламп ДРЛ:

  • высокая светоотдача (до 65 лм/Вт);
  • длительный период эксплуатации (10000 ч);
  • некритичность к условиям окружающей среды (кроме очень низких температур);
  • низкая стоимость по сравнению с другими газоразрядными лампами (примерно в 4-7 раз).

Недостатки ламп ДРЛ:

  • преобладание в спектре лучей сине-зеленой части, ведущее к неудовлетворительной цветопередаче, что исключает применение ламп в случаях, когда объектами различения являются лица людей или окрашенные поверхности;
  • длительность разгорания при включении (примерно 7 минут) и начало повторного зажигания после даже очень кратковременного перерыва в питания лампы лишь после остывания (примерно 10 мин);
  • значительное уменьшение светового потока к концу службы по сравнению с другими газоразрядными лампами;
  • необходимость обязательной дорогостоящей утилизации.
Читать еще:  Как сделать бензиновую горелку для пайки своими руками: чертежи

Дуговые ксеноновые трубчатые лампы (ДКсТ) при низкой световой отдаче и ограниченном сроке службы отличаются наиболее близким к естественному дневному спектральным составом света и наибольшей из всех источников света единичной мощностью. Первое достоинство практически не используется, так как лампы внутри зданий не применяются, второе обусловливает их широкое применение для освещения больших открытых пространств при установке на высоких мачтах. Недостатки ламп являются очень большие пульсации светового потока, избыток в спектре ультрафиолетовых лучей и сложность схемы зажигания.

Основные недостатки дроссельных схем включения

Электромагнитные ПРА, несмотря на значительный вес, образуют конструктивно защищенную форму, недоступную для посторонних.

Еще один недостаток, связанный с применением дросселей, — дроссели при функционировании на частоте 50 герц издают звуковой шум определенной интенсивности и громкости, что довольно неприятно для человека. По степени издаваемого звукового шума дроссели разделяют на четыре категории: со стандартным, сниженным, низким и особо низким уровнем шума (по российскому ГОСТ они обозначаются буквами Н, П, С и А).

Отличия дросселя от пускорегулирующего аппарата

Дроссели довольно часто называют пускорегулирующими аппаратами, что является совершенно неправильным названием, так как из того, о чем говорилось выше, становится понятно, что непосредственно дроссель не обеспечивает ни запуска источника света, ни его регулирование. Для запуска ламп требуется не только дроссель, но также стартовое устройство, а регулирование потока света является довольно сложной технологической проблемой, которую в некоторой степени становится возможно решить лишь в последние годы. По причине того, что одним из важных требований для функционирования стартерно-дроссельной схемы включения люминесцентных источников света является то, что пусковое напряжение стартового устройства должно быть больше напряжения горения лампы, то после запуска лампы стартовое устройство отключается, ток через него больше не проходит, и в дальнейшей работе оно не участвует.

Из этого следует, что не поступает также ток, нагревающий ламповые электроды, а для их нагревания и обеспечения необходимого уровня эмиссии из них электронов достаточно и разрядного тока работающей лампы. При попытке регулирования потока света при помощи понижения разрядного тока этого тока не будет достаточно для нагревания электродов до необходимой температуры, вследствие чего разряд будет неустойчивым, и лампа погаснет.

Для регулирования потока света необходимо каким-либо способом нагревать электроды до определенного уровня температуры, поэтому долгие годы было принято считать, что световой поток люминесцентных ламп вовсе невозможно регулировать.

Мы поможем подобрать светильники на ваш объект

Особенности включения ламп высокого давления

Схема включения ртутных газоразрядных ламп высокого давления более проста, чем схема включения люминесцентных ламп. Благодаря тому, что зажигающие электроды в этих лампах находятся в непосредственной близости к основным электродам, разряд между ними может формироваться при величине напряжения ниже сетевой. Возникающий разряд довольно слабый, так как его ток ограничивается интегрированными в лампу сопротивлениями, однако ток формирует стартовую ионизацию инертного газа в горелке, за счет которой возникший разряд поступает на главные рабочие электроды. Ток формируемого разряда лимитируется лишь дросселем, и его величина сразу после запуска в 2–3 раза выше, чем после окончательного загорания ртутной лампы. Ток разряда нагревает рабочие электроды до температуры, необходимой для нужного уровня эмиссии из них электронов (1000–1200 градусов). Из-за повышенного разрядного тока происходит нагревание стенок горелки, присутствующие на них частицы ртути со временем совершенно испаряются, и работа лампы постепенно стабилизируется. Процесс полного загорания лампы может происходить от 7 до 10 минут.

Для включения дуговых ртутных ламп необходимо использование только лишь дросселей. Как и в схемах подключения люминесцентных источников, в дросселях для дуговых ртутных ламп происходит потеря 10–15% общей мощности лампы, а для возмещения фазового смещения требуется применение компенсирующих конденсаторов, которые используют только параллельный тип компенсации.

В маркировке дросселей отражается тип используемой лампы, мощность и обозначение варианта конструкции.

Схемы включения газоразрядных ламп с дросселями достаточно просты, удобны и практичны, поэтому очень популярны и широко распространены, а для работы газоразрядных ламп высокого давления практически безальтернативны. Но такие схемы обладают несколькими недостатками:

  1. В дросселях происходит потеря мощности, в некоторых типах ламп соизмеримая с общей мощностью лампы.
  2. Дроссели создают фазовое смещение между напряжением и током лампы, что обуславливает необходимость использования специальных устройств — компенсирующих конденсаторов.
  3. Дроссели при работе создают неприятный звуковой шум.
  4. Люминесцентные источники света в таких стартерно-дроссельных схемах при зажигании мерцают, что неприятно для глаз, а также может ощутимо сокращать продолжительность службы источников света и генерировать сторонние радио помехи.
  5. Все газоразрядные источники света при функционировании с дросселями создают пульсирующий световой поток, причем глубина пульсаций потока способна достигать 100%.

Дроссели имеют большой вес, что оказывает заметное влияние на вес и габариты осветительных приборов, в которых эксплуатируются газоразрядные лампы. Обязательность использования компенсирующих конденсаторов лишь усугубляет этот недостаток.

Дроссельные схемы включения газоразрядных ламп подтвердили целесообразность их дальнейшего применения. Имеющиеся недостатки требуют более детального подхода к выбору сфер применения.

Принцип действия, особенности и использование ламп ДРЛ

Одним из самых популярных способов освещения улиц, промышленных помещений и открытых площадок является использование светильников с лампами высокого давления (ДРЛ, что можно расшифровать как дуговые ртутные лампы). Их особенность заключается в естественном спектре, высоком КПД и большом сроке службы. И, хотя на сегодняшний день известны и более экономичные и выгодные варианты (например, натриевые), лампа ДРЛ по-прежнему используется. Причём, самыми популярными устройствами являются варианты на 250 и 400 Вт.

Принцип действия

Конструкция лампы высокого давления достаточно простая и включает следующие элементы:

  • горелку, представляющую собой кварцевую колбу с двумя парами электродов, заполненную аргоном с добавлением дозированной капли ртути;
  • цоколь, при помощи которого электроэнергия передаётся от сети электродам;
  • заполненную азотом стеклянную колбу, где размещают горелку. Её внутреннюю поверхность покрывают люминофором.

Принцип действия основан на том, что её светящее тело выступает в качестве столба дугового электроразряда. Такая особенность достигается особым способом зажигания устройства:

  1. При подаче энергии на лампу между электродами создаётся разряд и практически сразу становится дуговым;
  2. В течение 10 мин после появления электроразряда технические характеристики прибора достигают номинальных значений. Время пускового периода зависит от температуры окружающей среды – чем она ниже, тем дольше разгорается лампа;
  3. От разряда внутри колбы появляется голубое (фиолетовое) свечение и ультрафиолетовое излучение, заставляющее светиться ещё и люминофор. Оба потока смешиваются, и лампа становится белой.

В процессе горения лампы напряжение электросети приводит к появлению колебаний светового потока в пределах 20–30 процентов. Приборы могут нагреваться, из-за чего приходится использовать вместе с ними специальные термостойкие провода и качественные контакты для патронов. Ещё одна особенность – трудности с зажиганием нагретых ламп, что приводит к необходимости подождать некоторое время перед запуском только что выключенного освещения и, при возможности, проверить остывание приборов.

Преимущества и недостатки

Основным преимуществом оборудования данного типа является высокая светоотдача по сравнению со стандартными осветительными приборами. Например, лампа ртутная ДРЛ 250 Е40 (расшифровка последнего элемента названия определяет вид цоколя) обеспечит световой поток на уровне 12000 лм, что сравнимо с обычной мощностью 1000 Вт. Натриевые приборы ещё эффективнее, но имеют другие недостатки.
На работу ламп практически не влияет ни температура, ни атмосферные осадки. Это позволяет использовать их для уличного освещения. Другими плюсами выбора ДРЛ можно назвать:

  • длительный срок службы, достигающий 20 тысяч часов. Например, для ДРЛ 400 Вт Е40 эксплуатационный период равен в среднем 15000 ч., что можно проверить в ходе её использования;
  • высокий световой КПД;
  • спектр излучения, близкий к естественному (в отличие от натриевых приборов, при использовании которых преобладает красный цвет);
  • компактные размеры больших ламп мощностью больше 400 Вт.

Среди недостатков приборов высокого давления отмечают:

образование озона в процессе работы, что необходимо учитывать при проектировании вентиляции помещений. Для уличного использования недостаток несущественный, как и при работе натриевых ламп, тоже выделяющих газ;

  • сравнительно высокую стоимость (лампа мощностью 400 Вт в 5–7 раз дороже обычной);
  • увеличение габаритов для некоторых вариантов (например, лампа ДРЛ 125 Е40 превышает по размеру устройство аналогичной мощности с вольфрамовой нитью);
  • изменение спектра через несколько месяцев использования в результате изменения технических характеристик слоя люминофора;
  • наличие ртути в составе. Из-за этого лампы ДРЛ, так же как и натриевые, приходится утилизировать отдельно, а специальные службы могут проверить соответствие числа купленных и утилизированных приборов.

Лампы такого типа обладают высокой чувствительностью к скачкам напряжения и требуют подключения через ПРА, что можно расшифровать как пускорегулирующий аппарат. Во время работы оборудование издаёт гудение, а спектр потока света может быть неприятным для глаз. Из-за этого приборы не используются в жилых помещениях и требуют включения по особой схеме – через дроссель. А применять их на производстве с вращающимися деталями нежелательно из-за появления стробоскопического эффекта (подвижные элементы кажутся неподвижными и затрудняют возможность проверить запуск в работу, например, станка).
Сравненительный анализ ламп можно увидеть в статье «Сравнение разных типов ламп.»

Включение в сеть

Напрямую включать лампу ДРЛ в сеть 220В нельзя, так как это может привести к её выходу из строя и короткому замыканию. Схема требует последовательного подключения ПРА. Пускорегулирующий аппарат (дроссель) выступает в роли реактивной нагрузки и гасит часть напряжения электросети, ограничивая ток и позволяя запустить лампу. Примерно тот же способ применяют и для натриевых осветительных приборов.

Читать еще:  Как заточить нож: средства, способы, нюансы

Использование дросселя вызывает и появление шума, и увеличивает стоимость системы освещения. Это же устройство приводит и к невозможности зажигания горячих ламп.

Из-за этого в последнее время стандартные дроссели со стальными катушками заменяются в схемах подключения электронными вариантами. Современное оборудование обеспечивает минимальную величину мерцания, стабильный поток света и отсутствие шума, хотя и не способны справиться с изменениями спектра.

Применение ламп

Чаще всего уличное освещение с помощью ламп высокого давления мощностью 400–2000 Вт устраивают для таких объектов:

  • открытых производственных участков, строительных площадок и складов;
  • проезжей части автомобильных тоннелей;
  • автостоянок, остановок и платформ;
  • тротуаров, дворов, парков, площадей;
  • пешеходных переходов.

В помещениях применение такого оборудования (ДРЛ 125–400 Е40) целесообразно для:

  • бытовых помещений;
  • производственных цехов;
  • сельскохозяйственных комплексов.

Пользуются лампами ДРЛ в сочетании с разноцветными плафонами и для декоративного уличного освещения архитектурных памятников и административных зданий. А мощность и спектр подбирают в зависимости от объекта, требуемой площади светового пятна и высоты подвеса. Так, для цехов достаточно варианта на 400 Вт. А для уличного использования требуется лампа ДРЛ 700 Вт Е40 или натриевые аналоги.

Лампа ДРЛ 125,250,400,700 расшифровка и технические характеристики

Лампы ДРЛ.

Лампа ДРЛ является электрическим газоразрядным светотехническим устройством для искусственного освещения. Аббревиатура расшифровывается – Дуговые Ртутные Лампы. Термин «ртутная лампа» или «РЛ» — общепризнанный. Он используется в технической документации.

  • Д – дуга.
  • Р – ртуть.
  • Л – люминофор (источник света).

Физическим принципом работы является электрический разряд в ртутных парах.

При маркировке присутствует еще и цифра, обозначающая мощность. К примеру, ДРЛ-250 – 250 Ватт, Дуговая Ртутная Лампа.

В СССР, в России существуют регламентирующие документы на изготовление ртутных осветителей ГОСТ 27682-88 и 53074-2008.

Устройство дуговой ртутной лампы

Первые горелки, которые применялись в этом типе световых источников имели 2 электрода, это требовало наличия дополнительного устройства, которое генерирует мощные импульсы для зажигания дуги. Напряжения горения ламп ниже, чем напряжение запуска. Первым устройством было ПУРЛ-220 – Пусковое Устройство Ртутных Ламп. 220 – это рабочее напряжение в вольтах. ПУРЛ-220 было недолговечным, так как базировалось на газовом разряднике. В семидесятые годы двухэлектродные лампы были сняты с производства. На смену пришли горелки с четырьмя электродами. Им не требовалось внешнего устройства для запуска. Запуск происходит намного проще.

1 – основной электрод.

2 — поджигающий электрод.

3 – выводы электродов из горелки.

5 – резистор (сопротивление).

В основе работы лежит два процесса:

  • Электрическая дуга между электродами.
  • Процесс люминесценции.

Внешний корпус изготавливают из специального жаропрочного стекла. Из колбы – внешнего корпуса откачан воздух. Вместо него закачан азот, либо инертный газ. Его предназначение – предотвращение теплообмена между горелкой и колбой. Тем не менее температура баллона может достигать 120 градусов. Цоколь предназначен для фиксации в патроне подключения. Внутренняя часть колбы покрыта изнутри люминофорным слоем. Люминофор – вещество, которое способно светиться в видимом нами спектре при облучении ультрафиолетом, либо при бомбардировке электронами. В случае с ДРЛ лампами – ультрафиолетовым излучением. Светящимся телом является электрическая дуга между электродами. Из-за наличия люминофорного покрытия колба непрозрачная.

В момент, когда лампа не подключена и холодная, ртуть может быть либо в виде шарика, может быть в виде тонкого слоя на стенках горелки.

Горелка представляет собой трубку из кварцевого стекла (либо специальной тугоплавкой прозрачной керамики), так как оно термостойкое и пропускает ультрафиолетовое излучение. Внутри находится строго дозированные порции инертного газа. Ультрафиолет вызывает свечение люминофорного слоя. Это самая главная часть — излучатель.

Резисторы необходимы для ограничения пусковых токов.

Виды ламп ДРЛ

Этот тип осветителей классифицируется по давлению паров внутри горелки:

  • Низкого давления — РЛНД, не более 100 Па.
  • Высокого давления — РЛВД, около 100 кПа.
  • Сверхвысокого давления — РЛСВД, около 1МПа.

У ДРЛ есть несколько разновидностей:

  • ДPИ – Дуговая Ртутная с излучающими добавками. Разница только в примененных материалах и наполнении газом.
  • ДРИЗ – ДРИ с добавлением зеркального слоя.
  • ДРШ – Дуговая Ртутная Шаровая.
  • ДРT – Дуговая Ртутная трубчатая.
  • ПРК – Прямая Ртутно-Кварцевая.

Западная маркировка отличается от российской. Этот тип маркируется как QE (если следовать ILCOS – общепринятой международной маркировке), по дальнейшей части можно узнать производителя:

Принцип работы и схемы подключения ДРЛ

Схема подключения двухэлектродной ДРЛ в статье не рассматривается, так как этот тип ламп морально устарел и более не производится.

На принципиальной схеме изображены:

C – конденсатор (не является обязательным элементом).

LL – дроссель (катушка индуктивности).

FU – плавкий предохранитель.

При подаче напряжения, происходит ионизация газа между парами основных и поджигающих электродов. Так как они расположены в непосредственной близости, то ионизация газа происходит легко между ними. После ионизации газа происходит пробой между основными электродами – образуется дуговой разряд. Свет от самого разряда имеет голубой, либо фиолетовый оттенок.

Сам люминофор дает красноватый оттенок, таким образом, происходит смешивание основных цветов и синтезируется холодный белый свет. Видимый оттенок может незначительно меняться в зависимости от приложенного напряжения.

Разряд в горелке набирает яркость в течение семи-восьми минут. Это связано с тем, что изначально ртуть находится в виде шарика в жидком состоянии. При росте температуры происходит постепенное испарение ртути и разряд улучшается. Как только жидкий металл полностью перейдет в состояние пара, яркость достигнет максимума. При этом повышается и давление. Максимальная яркость достигается за десять-пятнадцать минут. Температура окружающей среды влияет на время выхода источника света на штатный режим.

Дроссель необходим, он является простейшим ПРА – пускорегулирующим аппаратом. Также он ограничивает ток, проходящий через электроды. Если ДРЛ-лампу подключить напрямую в сеть, то ее выход из строя неминуем. Обычно это происходит мгновенно. Полярность подключения дросселя не играет никакой роли. Его главное предназначение – стабилизация работы осветителя.

Подбор дросселя для конкретной ДРЛ лампы рассмотрен в таблице

Номинальный ток дросселя (ПРА)

Подбор определенного дросселя по току

Подробно изучить конструкцию и принцип работы дросселя вы можете — тут

Используемая емкость конденсатора выбирается исходя из мощности лампы. Рекомендации представлены в таблице.

При нынешнем развитии электроники, дроссель – архаичный элемент. Сейчас в продаже можно найти блоки электронной стабилизации дуги. Эти устройства могут выдержать точные параметры питания, которые необходимы для запуска и поддержания горения вне зависимости от изменения напряжения в осветительной сети.

Если не удается приобрести электронный балласт, его можно изготовить самостоятельно. Здесь Ф – фаза, 0 – ноль.

Сфера применения

ДРЛ предназначены для освещения больших площадей. Обычно они применяются в уличном освещении, на автозаправках, дорогах. Часто их используют на складах. Т.е. там, где не нужно высокое качество цветопередачи.

Для постоянного использования в жилом помещении их не применяют. Это объясняется малым коэффициентом цветопередачи и долгим выходом на штатный режим. В домашних условиях, как минимум, неудобно ждать около десяти минут после щелчка выключателем.

Очень часто они встречаются в осветительных установках для выставочных комплексов. Здесь их преимущества раскрываются в полной мере – максимальный мощность может составлять 1кВт, при этом световой поток достигает 52000 люмен. Свечение у них, как правило, одного цвета – 5500 кельвинов.

Утилизация

Рассматриваемые световые приборы отнесены к первому классу опасности. Поэтому, сейчас растет количество мест, где эти они запрещены к применению. Возможно, что через несколько лет ртутные лампы будут сняты с производства повсеместно, так как политика государств направлена на снижение количества оборудования, содержащего ртуть. Выполняя государственный приказ, коммунальное хозяйство сокращает применение ДРЛ.

К сожалению, не все задумываются о вопросах вывода таких источников света из эксплуатации. Этим они вредят не только себя, но и окружающим.

В скором времени их продажа будет полностью прекращена. Приборы, содержащие ртуть, будут оставлены только в медицинском оборудования до того момента, пока не будет найдет безопасный аналог.

В настоящее время утилизация ртутных ламп является лицензируемой услугой. 3 сентября 2010 года было принято соответствующее постановление правительства РФ. Документ описывает требования к процессу утилизации, содержит информацию о порядке действий при заражении ртутью. Описан процесс демеркуризации – удаления ртути.

Сейчас все юридические лица РФ обязаны формировать паспорт отходов на люминесцентные лампы и вести строгий учет ртутьсодержащих отходов. Наличие ртути – это уже потенциальная опасность.

Под переработкой и утилизацией понимаются восстановление отслуживших свой срок металлов из приборов их содержащих. Ртути в том числе. Поврежденная колба обеспечит выход жидкого металл в окружающую среду.

В России действует закон ФЗ-187 (статья 139). Согласно нему, за неправильную утилизацию или размещение контейнера для опасных отходов в ненадлежащем месте взыскивается штраф. Несанкционированный вывоз за территорию хранения также наказуем.

Выбор и характеристики ДРЛ

Среди зарекомендовавших с положительной точки зрения поставщиков можно упомянуть: GE, Philips, Osram, Sylvanya, Radium, DELUX, Лисма, Евросвет, E.NEXT.

Имеются модели с уже встроенным балластом. Таким внешний дроссель не требуется.

Для того, чтобы выбрать необходимый тип осветительного прибора потребуется ответить на такие вопросы:

  • Какой срок службы необходим?
  • Какая яркость будет достаточная для освещаемой площади?
  • Патрон под какой цоколь будет использоваться?
  • Какая потребуется мощность?

Особенностью этого типа ламп является требование к их размещению. Они должны быть расположены высоко. К примеру, осветитель мощностью 125 Вт должен быть поднят на высоту 4 метра, а мощностью 1 кВт – уже на 8 метров.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector