Yoga-mgn.ru

Строительный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Никель, свойства атома, химические и физические свойства

Ni — Никель

НИКЕЛЬ (лат. Niссolum), Ni, химический элемент с атомным номером 28, атомная масса 58,69. Химический символ элемента Ni произносится так же, как и название самого элемента. Природный никель состоит из пяти стабильных нуклидов: 58 Ni (67,88 % по массе), 60 Ni (26,23 %), 61 Ni (1,19 %), 62 Ni (3,66 %) и 64 Ni (1,04 %). В периодической системе Д. И. Менделеева никель входит в группу VIIIВ и вместе с железом и кобальтом образует в 4-м периоде в этой группе триаду близких по свойствам переходных металлов. Конфигурация двух внешних электронных слоев атома никеля 3s 2 p 6 d 8 4s 2 . Образует соединения чаще всего в степени окисления +2 (валентность II), реже — в степени окисления +3 (валентность III) и очень редко в степенях окисления +1 и +4 (соответственно валентности I и IV).

Радиус нейтрального атома никеля 0,124 нм, радиус иона Ni 2+ — от 0,069 нм (координационное число 4) до 0,083 нм (координационное число 6). Энергии последовательной ионизации атома никеля 7,635; 18,15; 35,17; 56,0 и 79 эВ. По шкале Полинга электроотрицательность никеля 1,91. Стандартный электродный потенциал Ni 0 /Ni 2+ –0,23 B.

Простое вещество никель в компактном виде — блестящий серебристо-белый металл.

Физические и химические свойства: никель — ковкий и пластичный металл. Он обладает кубической гранецентрированной кристаллической решеткой (параметр а = 0,35238 нм). Температура плавления 1455°C, температура кипения около 2900°C, плотность 8,90 кг/дм 3 . Никель — ферромагнетик, точка Кюри около 358°C.

На воздухе компактный никель стабилен, а высокодисперсный никель пирофорен. Поверхность никеля покрыта тонкой пленкой оксида NiO, которая прочно предохраняет металл от дальнейшего окисления. С водой и парами воды, содержащимися в воздухе, никель тоже не реагирует. Практически не взаимодействует никель и с такими кислотами, как серная, фосфорная, плавиковая и некоторыми другими.

Металлический никель реагирует с азотной кислотой, причем в результате образуется нитрат никеля (II) Ni(NO3)2 и выделяется соответствующий оксид азота, например:

Только при нагревании на воздухе до температуры выше 800°C металлический никель начинает реагировать с кислородом с образованием оксида NiO.

Оксид никеля обладает основными свойствами. Он существует в двух полиморфных модификациях: низкотемпературной (гексагональная решетка) и высокотемпературной (кубическая решетка, устойчива при температуре выше 252°C). Имеются сообщения о синтезе оксидных фаз никеля состава NiO1,33-2,0.

При нагревании никель реагирует со всеми галогенами с образованием дигалогенидов NiHal2. Нагревание порошков никеля и серы приводит к образованию сульфида никеля NiS. И растворимые в воде дигалогениды никеля, и нерастворимый в воде сульфид никеля могут быть получены не только «сухим», но и «мокрым» путем, из водных растворов.

С графитом никель образует карбид Ni3C, c фосфором — фосфиды составов Ni5P2, Ni2P, Ni3P. Никель реагирует и с другими неметаллами, в том числе (при особых условиях) с азотом. Интересно, что никель способен поглощать большие объемы водорода, причем в результате образуются твердые растворы водорода в никеле.

Известны такие растворимые в воде соли никеля, как сульфат NiSO4, нитрат Ni(NO3)2 и многие другие. Большинство этих солей при кристаллизации из водных растворов образует кристаллогидраты, например, , . К числу нерастворимых соединений никеля относятся фосфат и силикат .

При добавлении щелочи к раствору соли никеля (II) выпадает зеленый осадок гидроксида никеля:

Ni(OH)2 обладает слабоосновными свойствами. Если на суспензию Ni(OH)2 в щелочной среде воздействовать сильным окислителем, например, бромом, то возникает гидроксид никеля (III):

Для никеля характерно образование комплексов. Так, катион Ni 2+ с аммиаком образует гексаамминовый комплекс и диакватетраамминовый комплекс . Эти комплексы с анионами образуют синие или фиолетовые соединения.

При действии фтора F2 на смесь NiCl2 и КСl возникают комплексные соединения, содержащие никель в высоких степенях окисления: +3 — () и +4 — ().

Порошок никеля реагирует с оксидом углерода (II) СО, причем образуется легко летучий тетракарбонил Ni(CO)4, который находит большое практическое применение при нанесении никелевых покрытий, приготовлении высокочистого дисперсного никеля и т. д.

Характерна реакция ионов Ni 2+ с диметилглиоксимом, приводящая к образованию розово-красного диметилглиоксимата никеля. Эту реакцию используют при количественном определении никеля, а продукт реакции — как пигмент косметических материалов и для других целей.

История открытия: уже с 17 в. рудокопам Саксонии (Германия) была известна руда, которая по внешнему виду напоминала медные руды, но меди при выплавке не давала. Ее называли купферникель (нем. Kupfer — медь, а Nickel — имя гнома, подсовывавшего горнякам вместо медной руды пустую породу). Как оказалось впоследствии, купферникель — соединения никеля и мышьяка, NiAs. История открытия никеля растянулась почти на полвека. Первым вывод о присутствии в купферникеле нового «полуметалла» (то есть, по тогдашней терминологии, простого вещества, промежуточного по свойствам между металлами и неметаллами) сделал шведский металлург А. Ф. Кронстедт в 1751 году. Однако более двадцати лет это открытие оспаривалось и господствовала точка зрения, что Кронстедт получил не новое простое вещество, а какое-то соединение с серой то ли железа, то ли висмута, то ли кобальта, то ли какого-то другого металла.

Только в 1775 г., через 10 лет после смерти Кронстедта, швед Т. Бергман выполнил исследования, позволявшие заключить, что никель — это простое вещество. Но окончательно никель как элемент утвердился только в начале 19-го века, в 1804 году, после скрупулезных исследований немецкого химика И. Рихтера, который для очистки провел 32 перекристаллизации никелевого купороса (сульфата никеля) и в результате восстановления получил чистый металл.

Нахождение в природе: в земной коре содержание никеля составляет около 8·10 –3 % по массе. Возможно, громадные количества никеля — около 17·10 19 т — заключены в ядре Земли, которое, по одной из распространенных гипотез, состоит из железоникелевого сплава. Если это так, то Земля примерно на 3 % состоит из никеля, а среди составляющих планету элементов никель занимает пятое место — после железа, кислорода, кремния и магния. Никель содержится в некоторых метеоритах, которые по составу представляют собой сплав никеля и железа (так называемые железоникелевые метеориты). Разумеется, как практический источник никеля такие метеориты значения не имеют. Важнейшие минералы никеля: никелин (современное название купферникеля) NiAs, пентландит [сульфид никеля и железа состава ], миллерит NiS, гарниерит и другие никельсодержащие силикаты. В морской воде содержание никеля составляет примерно .

Получение: значительную часть никеля получают из сульфидных медно-никелевых руд. Из обогащенного сырья сначала готовят штейн — сульфидный материал, содержащий, кроме никеля, еще и примеси железа, кобальта, меди и ряда других металлов. Методом флотации получают никелевый концентрат. Далее штейн обычно подвергают обработке для отделения примесей железа и меди, а затем обжигают и образовавшийся оксид восстанавливают до металла. Существуют и гидрометаллургические методы получения никеля, в которых для его извлечения из руды используют раствор аммиака или серной кислоты. Для дополнительной очистки черновой никель подвергают электрохимическому рафинированию.

Применение: основная доля выплавляемого никеля (до 80%) расходуется на приготовление различных сплавов. Так, добавление никеля в стали позволяет повысить химическую стойкость сплава, и все нержавеющие стали обязательно содержат никель. Кроме того, сплавы никеля характеризуются высокой вязкостью и используются при изготовлении прочной брони. Сплав железа и никеля, содержащий 36-38% никеля, обладает удивительно низким коэффициентом термического расширения (это — так называемый сплав инвар), и его применяют при изготовлении ответственных деталей различных приборов.

При изготовлении сердечников электромагнитов широкое применение находят сплавы под общим названием пермаллои. Эти сплавы, кроме железа, содержат от 40 до 80 % никеля. Общеизвестны применяемые в различных нагревателях нихромовые спирали, которые состоят из хрома (10-30 %) и никеля. Из никелевых сплавов чеканятся монеты. Общее число различных сплавов никеля, находящих практическое применение, достигает нескольких тысяч.

Высокая коррозионная стойкость никелевых покрытий позволяет использовать тонкие никелевые слои для защиты различных металлов от коррозии путем их никелирования. Одновременно никелирование придает изделиям красивый внешний вид. В этом случае для проведения электролиза используют водный раствор двойного сульфата аммония и никеля .

Никель широко используют при изготовлении различной химической аппаратуры, в кораблестроении, в электротехнике, при изготовлении щелочных аккумуляторов, для многих других целей.

Читать еще:  Описание и характеристики отрезных дисков для болгарки по металлу

Специально приготовленный дисперсный никель (так называемый никель Ренея) находит широкое применение как катализатор самых разных химических реакций. Оксиды никеля используют при производстве ферритных материалов и как пигмент для стекла, глазурей и керамики; оксиды и некоторые соли служат катализаторами различных процессов.

Биологическая роль: никель относится к числу микроэлементов, необходимых для нормального развития живых организмов. Однако о его роли в живых организмах известно немного. Известно, что никель принимает участие в ферментативных реакциях у животных и растений. В организме животных он накапливается в ороговевших тканях, особенно в перьях. Повышенное содержание никеля в почвах приводят к эндемическим заболеваниям — у растений появляются уродливые формы, у животных — заболевания глаз, связанные с накоплением никеля в роговице. Токсическая доза (для крыс) — 50 мг. Особенно вредны летучие соединения никеля, в частности, его тетракарбонил Ni(CO)4. ПДК соединений никеля в воздухе составляет от 0,0002 до 0,001 мг/м 3 (для различных соединений).

Конспект урока по теме «Железо.Никель. Платина»

Цель : обобщить и конкретизировать знания учащихся о строении металлов и зависимости строения и свойств на примере железо, никель и платина.

обучающая:- изучить общую характеристику металлов побочной подгруппы; — основные физические и химические свойства простых веществ, образованных этими элементами;

развивающая: — использовать знания, полученные на уроках, при подготовке к экзаменам по химии и биологии;

воспитательная: — воспитание осторожности при проведении опытов, осознание необходимости использования знаний разных предметов при подготовке к экзаменам.

Предметные результаты:

Знать:

строение атомов железа, никеля, платины;-положение в ПСХЭ;

— способы получения металлов;

-химические свойства простых веществ образованных этими металлами;

Уметь:

-характеризовать химические элементы побочной подгруппы по положению в ПСХЭ Д.И.Менделеева и строению атома;

-составлять и записывать уравнения реакций, характеризующих химические свойства металла и способы их получения;

-на основании физических свойств указывать области применения металлов.

Метапредметные результаты:

умение соотносить свои действия с планируемыми результатами;

умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками.

Личностные результаты:

-развитие ответственного отношения к учению;

-развитие осознанного, уважительного и доброжелательного отношения к другому человеку

Тип урока: комбинированный.

Методы: частично-поисковый.

Формы работы учащихся: фронтальная, групповая.

Ход урока

I. Организационный момент

Проверка готовности к уроку. Приветствие.

II. Актуализация знаний

Каково строение атомов титана и хрома?

В каком виде титан и хром находится в природе?

Какие способы получения титана и хрома?

Какими химическими способами обладают титан и хром?

Сообщение темы и определение цели урока

1)Вопросы по периодической системе

Где в п.с. расположены d- элементы?

Что общего в строении d- элементов?

Вывод : у d- элементов плавное изменение свойств, они носят название переходные элементы.

2) Составление электронных формул (на основании ответов учащихся)

1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2

1s 2 2s 2 2p 6 3s 2 3p 6 3d 8 4s 2

Возможные степени окисления

Вопрос : Чем связаны такие степени окисления железа, никеля, платины.

3) Посмотрим на ряд активности: железо, никель металлы средней активности. Платина металл инертный.

В каком виде эти элементы встречаются в природе?(в виде соединений- например, сульфиды)

Железо один из наиболее распространенных металлов земной коры (2 мол.%). Основные минералы: Fe 3 O 4 — магнетит, Fe 2 O 3 — гематит, Fe 2 O 3  nH 2 O — лимонит, FeCO 3 — сидерит, FeS 2 – пирит

Никель — довольно распространенный элемент земной коры, его кларк составляет 0,0032 мол.%, обычно содержится в сульфидных медно-никелевых рудах. Известно несколько самостоятельных минералов, из которых наибольшим содержанием никеля отличается миллерит — NiS.

Физические свойства

Железо – металл серебристо- белого цвета, мягкий , пластичный, тяжелый металл. Тугоплавкий.

Никель – серебристо-белый, очень твердый металл, имеет высокую температуру плавления.

Платина – белый, пластичный и ковкий металл, с высокой температурой плавления. Тяжелый металл.

Сравнительная характеристика металлов

Железо

Никель

Платина

Взаимодействие с простыми веществами

При обычных температурах не реагирует, а реагирует только в мелкораздробленном виде.

С кислотами

Не взаимодействует с кислотами

С водой

При 600  С никель реагирует с водой:

Не взаимодействует

III.Самостоятельная работа с учебником (по группам) стр 141-144

По учебнику изучить применение титана и хрома.

IV . Закрепление изученного материала

1 . Порцию железа массой 12 г растворили в соляной кислоте. Найти объем газа, образовавшегося при этом.

2. Напишите уравнения реакций взаимодействия железа с хлором, серой, бромом, кислородом.

3. Вычислить массу оксида железа (III), который потребуется для получения железа массой 1 кг .

4. Осуществить превращения, назвать вещества:

Нитрат железа (III) → гидроксид железа (III) → оксид железа (III) → железо → хлорид железа (II)

5. Осуществить превращения, назвать вещества:

Железо → сульфат железа (II) → гидроксид железа (II) → оксид железа (II) → хлорид железа (II) →железо

6. Как, исходя из сульфата железа (II) получить хлорид железа (II)? Приведите уравнения соответствующих реакций.

7. Какой объем хлора (н.у.) необходим для реакции с 7 г железа?

V Итоги урока. Рефлексия (карточка)

VI. Домашнее задание . §32 упр 1- 3

Химия. 11 класс

Конспект урока

Химия, 11 класс

Урок № 12. Медь. Цинк. Титан. Хром. Железо. Никель. Платина

Перечень вопросов, рассматриваемых в теме: урок посвящён изучению основных металлов побочной подгруппы или Б-группы: меди, цинка, титана, хрома, железа, никеля и платины, их физическим и химическим свойствам, способам получения и применению.

Катализатор – вещество, которое ускоряет химическую реакцию.

Пассивация – переход металла в неактивное состояние из-за образования на его поверхности оксидной плёнки. Может усиливаться концентрированными кислотами.

Проскок электрона – отступление от общей для большинства элементов последовательности заполнения электронных оболочек.

Хромирование/никелирование – покрытие поверхности металла другим, более устойчивым, для предотвращения коррозии.

Цинковая обманка (ZnS) – сложно идентифицируемое соединение цинка, подверженное сильному влиянию примесей на ее внешний вид.

Основная литература: Рудзитис, Г. Е., Фельдман, Ф. Г. Химия. 10 класс. Базовый уровень; учебник/ Г. Е. Рудзитис, Ф. Г, Фельдман – М.: Просвещение, 2018. – 224 с.

Дополнительная литература:

1. Рябов, М.А. Сборник задач, упражнений и тесто по химии. К учебникам Г.Е. Рудзитис, Ф.Г. Фельдман «Химия. 10 класс» и «Химия. 11 класс»: учебное пособие / М.А. Рябов. – М.: Экзамен. – 2013. – 256 с.

2. Рудзитис, Г.Е. Химия. 10 класс : учебное пособие для общеобразовательных организаций. Углублённый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. – М. : Просвещение. – 2018. – 352 с.

Открытые электронные ресурсы:

  • Единое окно доступа к информационным ресурсам [Электронный ресурс]. М. 2005 – 2018. URL: http://window.edu.ru/ (дата обращения: 01.06.2018).

ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ ДЛЯ САМОСТОЯТЕЛЬНОГО ИЗУЧЕНИЯ

Медь является металлом, расположенным в I группе побочной подгруппе и имеет следующую электронную конфигурацию:

Рисунок 1 – Электронная конфигурация атома меди

Мы видим, что у меди наблюдается проскок электрона – отступление от общей для большинства элементов последовательности заполнения электронных оболочек. По принципу наименьшей энергии электронные орбитали должны заполняться в следующем порядке:

1s → 2s → 2p → 3s → 3p → 4s → 3d …

Но для некоторых атомов энергетически более выгодно иметь наполовину (5 электронов, дальше увидим у хрома) или полностью заполненную (10 электронов, как у меди) 3d-орбиталь.

Медь имеет две валентности: 1 и 2 и проявляет степени окисления +1 и +2.

Медь обладает следующими физическими свойствами

Таблица 1 – Основные физические свойства меди

Тягучая, вязкая, легко прокатывается

Температура плавления, °С

Нахождение в природе

В природе медь встречается в самородном виде, а также в составе некоторых минералов:

  • медный блеск, Cu2S;
  • куприт, Cu2O;
  • медный колчедан, CuFeS;
  • малахит, (CuOH)2CO3.

Способы получения меди

Основными способами получения меди являются:

  1. Восстановление коксом и оксидом углерода (II). Таким образом получают медь из куприта:

Cu2O + С = 2Сu + CO

  1. Обжиг в специальных печах до оксидов. Данный способ подходит для сульфидных и карбонатных руд.
  2. Электролиз. Единственный из перечисленных способов, который позволяет получить медь без примесей.

При комнатной температуре медь не вступает в реакции с большинством соединений. При повышенной температуре ее реакционная способность резко возрастает.

Реакции с простыми веществами:

Реакции со сложными веществами:

Широкое применение находит как сама медь, так и её соединения. В чистом виде она используется для производства проводов, кабелей, теплообменных аппаратов, а также входит в состав многих сплавов.

Читать еще:  Фрезы по дереву для дрели: виды и параметры

Соединения меди, например, медный купорос CuSO4∙5H2O используется для защиты растений, а гидроксид меди является качественным реагентом для определения альдегидной группы у органических соединений, а также наличия глицерина (дает голубое окрашивание раствора).

Цинк является металлом, расположенным в II группе побочной подгруппе, и имеет следующую электронную конфигурацию:

Рисунок 2 – Электронная конфигурация атома цинка

В связи с тем, что 4s-орбиталь заполнена, цинк может находиться в единственной степени окисления, равной +2.

Цинк обладает следующими физическими свойствами

Таблица 2 – Основные физические свойства цинка

Температура плавления, °С

Нахождение в природе

В природе цинк встречается только в связанном состоянии, а именно в цинковом шпате ZnCO3 и цинковой обманке ZnS. Свое название цинковая обманка получила за то, что его сложно идентифицировать, поскольку он может выглядеть совершенно по-разному: быть различного цвета и структуры в зависимости от посторонних примесей.

Способы получения цинка

Чистый цинк получают обжигом с последующим восстановлением:

Цинк является довольно устойчивым металлом, поскольку на воздухе покрывается оксидной пленкой, и в дополнение практически не взаимодействует с водой при нормальных условиях. Но так же, как и медь, становится более активным при повышении температуры.

Реакции с простыми веществами:

Реакции со сложными веществами:

Цинк является коррозионно-устойчивым металлом, поэтому он нашёл применение в производстве защитных покрытий металлов, гальванических элементов, а также как компонент сплавов.

Титан является элементом IV группы побочной подгруппы и имеет следующее электронное строение:

Рисунок 3 – Электронная конфигурация атома титана

Данная конфигурация позволяет атому титана проявлять две степени окисления: +2 и +4.

Титан обладает следующими физическими свойствами:

Таблица 3 – Основные физические свойства титана

Высокая прочность и взякость

Температура плавления, °С

Нахождение в природе

В природе титан можно найти в составе таких минералов, как:

  • титаномагнетит, FeTiO3∙Fe3O4;
  • ильменит, FeTiO3;
  • рутил, TiO2.

Способы получения титана

В связи с тем, что в природе не существует титановых руд, человеку приходится извлекать его путём хлорирования рудных концентратов с их последующим восстановлением с помощью магния или натрия.

Для удаления примесей магния и его соли полученную смесь продуктов нагревают под вакуумом.

Титан является очень активным металлом, но его оксидная пленка не даёт ему взаимодействовать при нормальных условиях ни с морской водой, ни даже с «царской водкой». Поэтому все реакции протекают при повышенных температурах.

Реакции с простыми веществами:

Азотная кислота действует на титан только в форме порошка, в то время как разбавленная серная кислота реагирует с металлом:

Титан и его сплавы отличает не только коррозионная стойкость, но и лёгкость, прочность. В связи с этим он активно используется при построении космических ракет, самолётов, подлодок и морских судов. Титан не взаимодействует с тканями организмов, из-за чего используется в хирургии.

Хром находится в IV группе побочной подгруппе и имеет следующее электронное строение:

Рисунок 4 – Электронная конфигурация атома хрома

Так как для атома хрома энергетически более выгодно иметь наполовину заполненную 3d-орбиталь, у него, как и у меди, наблюдается проскок электрона, что позволяет ему находиться в степенях окисления от +1 до +6, но наиболее устойчивыми являются +2, +3, +6.

Хром обладает следующими физическими свойствами:

Таблица 4 – Основные физические свойства хрома

Серебристо-белый с металлическим блеском

Температура плавления, °С

Нахождение в природе

В природе большая часть хрома заключена в составе хромистого железняка Fe(CrO2)2. Иногда может встречаться в виде оксида хрома (III) и других соединениях.

Способы получения хрома

Из хромистого железняка путем восстановлением углем при высоких температурах получают смесь железа и хрома – феррохром:

FeO + Cr2O3 + 3C = Fe + 2Cr + 3CO↑

Для получения чистого хрома проводят восстановление оксида хрома (III) алюминием:

Как и все вышеописанные металлы, хром покрыт оксидной плёнкой, которую трудно растворить даже сильными кислотами. Благодаря ней он обладает высокой стойкости к коррозии, поэтому начинает реагировать с разбавленными растворами кислот лишь спустя время. Концентрированные кислоты, такие как HNO3 и H2SO4, пассивируют оксидную пленку (укрепляют ее).

Благодаря своей коррозионной стойкости, хром используют в качестве защитных покрытий (хромируют поверхности металлов и сплавов). Также используется для создания легированных сталей, речь о которых пойдет в следующем уроке.

Железо – металл, с которым мы чаще всего сталкиваемся в нашей жизни, поэтому переоценить его значимость для человека невозможно. Он является самым распространенным после алюминия и составляет 5% земной коры. Теперь перейдем к рассмотрению его строения и свойств.

Железо находится в VII группе Б-подгруппе и имеет такое электронное строение, которое позволяет ему находиться в двух степенях окисления: +2 и +3. Конечно, в теории железо может выступать в качестве шестивалентного металла, но из-за пространственных затруднений ему не удается образовать такое количество связей. Поэтому такое состояние является неустойчивым для данного металла.

Рисунок 5 – Электронная конфигурация атома железа

Железо обладает следующими физическими свойствами:

Таблица 5 – Основные физические свойства железа

Перезвоним за 30 секунд.

Это бесплатно. Ваш телефон в международном формате, пожалуйста. Например,
+7 (495) 111-11-11 Москва, Россия.
+380 (44) 111-11-11 Киев, Украина.
+49 (30) 111-111-11 Берлин, Германия

  • Главная
  • Никелевые сплавы
  • Никель металл
  • Добыча и общие сведения

Физические и химические свойства никеля

Физические свойства

Никель — ковкий и вязкий металл, доступный прокатке в тончайшую фольгу. Предел прочности при растяжении 40−50 кгс/мм 2 , предел упругости 8 кгс/мм 2 , предел текучести 12 кгс/мм 2 ; относительное удлинение 40%; модуль нормальной упругости 205 Гн/м2; твёрдость по Бринеллю 600−800 Мн/м 2 . От абсолютного нуля до 631°К сохраняются ферромагнитные физические свойства. Ферромагнетизм обусловлен особенностями строения внешних электронных оболочек. По той же причине сплавы и ряд производных никеля (окислы, и соединения с галогенами.) магнитоупорядочены с ферро-, реже ферримагнитной структурой. В нормальных условиях кристаллическая решетка имеет β-структуру с гранецентрированным кубическим строением (a = 3,5236. Но после катодного распыления в атмосфере H2, решётка приобретает плотную гексагональную структуру (а = 2,65 [pic], с = 4,32 [pic]), которая выше t° 200 °C переходит в кубическую. У никеля с кубический решеткой уд. вес 8,9 г/см³ температура плавления 1453 °C; а кипения 3000 °C; уд. теплоёмкость (t° 20°C) 0,44 кдж/(кг-К); температурysq коэффициент линейного расширения 13,3×10 -6 (0−100°С); теплопроводность при 25 °C 90,1 вмl (м-K)[0,215 кал/(см-сек-оС)].

Химические свойства

По химической активности этот метал стоит между благородными металлами и железом. В соединениях Ni чаще всего двухвалентный. В виде порошка активно поглощает Н2, CO; но насыщаясь газами, теряет свои механические достоинства. Нагреваясь до 500 °C, вступает в связь с кислородом,. Мелкодисперсный порошок пирофорен — самовоспламеняется на воздухе. Закись NiO — зеленоватые кристаллы, нерастворимые в воде (минерал бунзенит). Сгорая в серных парах, образует сульфид Ni3 S2. Моносульфид NiS получают, нагревая NiO с серой. Азот не взаимодействует с этим металлом до 1400 °C. Нитрид Ni3 N образуется, если нагревать порошковый Ni с азотом (t° 445 °C). В раскаленных парах фосфора образуется фосфид Ni3 P2. С мышьяком — соединения Ni5 As2, Ni3 As (минерал маухерит) и NiAs. В решетке NiAs — гексагональное расположение атомов мышьяка, между которыми втиснуты атомы Ni. Такая структура типична для многих металлидов. Нестойкий карбид Ni3 C образуется после длительного (сотни часов) науглероживания (цементации) порошкового Ni в атмосфере CO при 300 °C. Расплавленный никель легко растворяет углерод, который при охлаждении выделяется в виде графита. С потерей графита снижается ковкость.

Химическая активность

Никель химически менее активен, чем железо, более устойчив к действию кислот и влаги. С органическими кислотами реагирует лишь после длительной экспозиции. В соляной и серной и кислотах растворяется медленно, в разбавленной азотной — легко; а концентрированная азотная кислота пассивирует никель, хотя и в меньшей степени, чем Fe. Кислотные соли никеля — двухвалентны. Почти все они хорошо растворимы в воде, где дают кислую реакцию. Плохо растворимы только соли угольной и фосфорной кислоты. Сульфат NiSO4 кристаллизуется в виде изумрудно-зелёных кристаллов никелевого купороса NiSO4 x7H2 O. При прокаливании до 800 °C почти все соли никеля разлагаются. Этот металл устойчив к действию сильных щелочей, но растворяется в растворе аммиака в присутствии (NH4)2 CO3 с образованием интенсивно-синих растворов. Свойство избирательного образования аммиакатов используют во время гидрометаллургического получения никеля из руд.

Читать еще:  Тепловизоры. Виды и работа. Устройство и применение. Особенности

Химические свойства меняются в зависимости от температуры. Нагреваясь, никель реагирует с SO2, NH4 и окислами азота, а также в виде мелко измельчённого порошка — с CO с образованием карбонила Ni (CO)4. Термической диссоциацией карбонила получают самый чистый никель.

Поставщик

Вас интересуют физические и химические свойства никеля? Поставщик «Ауремо» подробно описывает физические и химические свойства металлов. На сайте поставщика «Ауремо» размещены физические и химические свойства промышленных сплавов и металлов.

Никель-ниобий

ООО «НКМ Норд», выступая прямым представителем крупного холдинга по производству и поставке цветных металлов и сплавов, которые используются с целью легирования сталей, представляет на рынке Санкт-Петербурга и Москвы высокопрофессиональную продукцию по доступным ценам.

Ниобий сочетает в себе множество полезных физических, механических и технологических свойств, которые определяют его применение от металлургии до ядерной физики. На странице представлено описание данного металла: физические, химические свойства, области применения, марки, виды продукции.

Основные сведения о ниобии

Ниобий (Nb) — химический элемент V группы периодической системы, атомный номер 41, атомная масса 92,90. Блестящий серебристо-серый металл, относящийся к классу тугоплавких. Имеет плотность 8,57 г/см 3 , температуру плавления tпл. = 2468 °С, температуру кипения tкип. = 4742 °С. Обладает хорошей прочностью, твердостью и пластичностью.

Описываемый химический элемент относится к редким тугоплавким металлам. В рудах всегда присутствует совместно с танталом. Основные минералы — колумбит-танталит, лопарит, пирохлор.

История открытия ниобия

Открытие ниобия было сделано английским ученым Чарльзом Хэтчетом в 1801 г. Тогда этот металл получил название “колумбий”. До 1844 г. считалось, что Ta и Nb являются одним и тем же элементом. Получить Nb в чистом виде удалось лишь в конце XIX века. Это было сделано французским химиком Анри Муассаном путем восстановления оксида ниобия углеродом в электропечи.

Физические свойства ниобия

СвойствоЗначение
Атомный номер41
Атомная масса, а.е.м92,90
Радиус атома, пм146
Плотность, г/см³8,57
Молярная теплоемкость, Дж/(K·моль)22,44
Теплопроводность, Вт/(м·K)53,7
Температура плавления, °С2468
Температура кипения, °С4742
Теплота плавления, кДж/моль26,8
Теплота испарения, кДж/моль680
Молярный объем, см³/моль10,8
Группа металловТугоплавкий металл

Химические свойства ниобия

СвойствоЗначение
Ковалентный радиус, пм164
Радиус иона, пм(+5e) 69
Электроотрицательность (по Полингу)1,6
Электродный потенциал
Степени окисления5, 4, 3, 2, 1

Марки ниобия и сплавов

Промышленное применение находит ка чистый ниобий, не содержащий никаких легирующих элементов, так и сплавы на его основе.

  • Нб1 — ниобий высокой чистоты с количеством Nb — 99,84%; поставляется в виде слитков.
  • НбШ00, НбШ0, НбШ1 — чистый ниобий в виде штабиков, содержание Nb составляет 99,77%, 99,56%, 99,37% соответственно.
  • НбП, НбП-а, НбП-б — чистый ниобий в виде порошка.
  • ВН1, ВН2, ВН2АЭ — сплавы ниобия с молибденом; молибденом и цирконием. Первая марка содержит в своем составе 3,8-52% Mo, вторая — 3,5-4,7% Mo и 0,5-0,9% Zr.
  • НбЦ, НбЦУ, Нб5В2МЦ, Нб10В2МЦ, Нб10В5МЦУ — группа сплавов на основе ниобия, в состав которых в разных количествах входят вольфрам, молибден, цирконий, углерод.

Достоинства и недостатки

  • имеет высокую температуру плавления;
  • стоек к коррозии во многих химически агрессивных средах;
  • имеет хорошие технологические и механические свойства — хорошая пластичность и свариваемость, прочность.
  • относительно небольшой процент содержания в земной коре;
  • достаточно высокая стоимость (дешевле, чем тантал, но существенно дороже вольфрама и молибдена).

Применение ниобия

Основные направления использования металла следующие:

  • химическая и атомная промышленность;
  • металлургия;
  • электроника;
  • ядерная физика;
  • авиастроение.

Высокая прочность и хорошая стойкость к коррозии в том числе и при высоких температурах позволяют применять ниобий в качестве конструкционного материала. Подобное использование характерно для изготовления деталей летательных аппаратов, труб и контейнеров для передачи и хранения жидких металлов, оболочек для радиоактивных тепловыделяющих элементов.

Nb — распространенный легирующий элемент, который позволяет существенно улучшать свойства содержащих его сталей и сплавов. Nb передает в легируемые материалы прочность, коррозионную стойкость, тугоплавкость.

Рассматриваемый металл также применяется в изготовлении конденсаторов — важных элементов электронной промышленности. По своим характеристикам ниобиевые конденсаторы уступают танталовым, однако имеют существенно меньшую цену.

Соединения ниобия Nb3Sn, Nb3Ge, NbN и NbTi применяются для производства сверхпроводников. Такие свойства востребованы в научном оборудовании, используемом, например, в физических экспериментах.

Продукция из ниобия

Современное промышленное производство предлагает практически полный спектр стандартных заготовок, активно используемых в различных областях. Из круглого проката можно выделить ниобиевую проволоку, пруток и трубу. Плоский прокат представляет ниобиевая фольга и лента, листы, полосы. К исходному сырью можно отнести порошок ниобия, который занимает основополагающее место в цепочке производства изделий из данного металла.

Металл никель

Никель является жарпочрочным, жаростойким и коррозионностойким металлом, что определяет его применение в качестве конструкционного материала для изделий, подверженных воздействию различных агрессивных сред в том числе при повышенных температурах, а также подверженных механическим нагрузкам при высоких температурах. Помимо этого никель служит является популярным легирующим элементом для сталей и сплавов. На странице представлено описание данного металла: физические свойства, области применения, марки никеля, виды продукции.

Основные сведения о никеле

Никель (Ni) (Niccolum) — химический элемент с атомным номером 28 в периодической системе, ковкий и пластичный металл. Имеет серебристый цвет с желтоватым оттенком, хорошо полируется, притягивается магнитом. Плотность никеля составляет 8,902 г/см 3 , температура плавления tпл. = 1453°С, температура кипения tкип. = 2730-2915°С, данный металл является ферромагнетиком, точка Кюри около 358 °C. На воздухе компактный никель стабилен. Поверхность никеля покрыта тонкой пленкой оксида NiO, которая прочно предохраняет металл от дальнейшего окисления.

В земной коре содержание никеля составляет около 8·10 -3 % по массе. Возможно, громадные количества никеля — около 17·10 19 тонн — заключены в ядре Земли, которое, по одной из распространенных гипотез, состоит из железоникелевого сплава. В морской воде содержание никеля составляет примерно 1·10 -8 -5·10 -8 %.

История открытия никеля

Свойства никеля

Физические свойства никеля

Свойство

Никель
Атомный номер

28
Атомная масса, а.е.м

58,69
Атомный диаметр, пм

248
Плотность, г/см³

8,902
Удельная теплоемкость, Дж/(K·моль)

0,443
Теплопроводность, Вт/(м·K)

90,9
Температура плавления, °С1453
Температура кипения, °С2730-2915
Теплота плавления, кДж/моль17,61
Теплота испарения, кДж/моль378,6
Молярный объем, см³/моль6,6
Группа металловТяжелый металл

Химические свойства никеля

Свойство

Никель
Ковалентный радиус, пм

115
Радиус иона, пм

(+2e) 69
Электроотрицательность (по Полингу):

1,91
Электродный потенциал:

0
Степени окисления:

3, 2, 0

Марки никеля и сплавов

Достоинства / недостатки никеля

    Достоинства:
  • обладает высокой жаропрочностью и жаростойкостью;
  • имеет высокую коррозионную стойкость во многих агрессивных средах.
    Недостатки:
  • имеет высокую стоимость.

Применение никеля

Никель по большей части является составным компонентом различных сплавов. Все нержавеющие стали обязательно содержат никель, так как никель повышает химическую стойкость сплава. Также сплавы никеля характеризуются высокой вязкостью и используются при изготовлении прочной брони. При изготовлении важнейших деталей различных приборов используется сплав никеля с железом (36-38% никеля), обладающий низким коэффициентом термического расширения.

При изготовлении сердечников электромагнитов широкое применение находят сплавы под общим названием пермаллои. Эти сплавы, кроме железа, содержат от 40 до 80% никеля. Из никелевых сплавов чеканятся монеты. Общее число различных сплавов никеля, находящих практическое применение, достигает нескольких тысяч.

Различные металлы никелируют, что позволяет защитить их от коррозии. На металл наносится тонкий никелевый слой, обладающий высокой коррозионной стойкостью. Вместе с этим никелирование придает изделиям красивый внешний вид.

Никель широко используют при изготовлении различной химической аппаратуры, в кораблестроении, в электротехнике, при изготовлении щелочных аккумуляторов, для многих других целей. Специально приготовленный дисперсный никель находит широкое применение как катализатор самых разных химических реакций. Оксиды никеля используют при производстве ферритных материалов и как пигмент для стекла, глазурей и керамики; оксиды и некоторые соли служат катализаторами различных процессов. Производство железо-никелевых, никель-кадмиевых, никель-цинковых, никель-водородных аккумуляторов.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector