Yoga-mgn.ru

Строительный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Разные платы Arduino: распиновка и схема подключения

Arduino.ru

Arduino Uno

Общие сведения

Arduino Uno контроллер построен на ATmega328 (техническое описание, pdf). Платформа имеет 14 цифровых вход/выходов (6 из которых могут использоваться как выходы ШИМ), 6 аналоговых входов, кварцевый генератор 16 МГц, разъем USB, силовой разъем, разъем ICSP и кнопку перезагрузки. Для работы необходимо подключить платформу к компьютеру посредством кабеля USB, либо подать питание при помощи адаптера AC/DC или батареи.

В отличие от всех предыдущих плат, использовавших FTDI USB микроконтроллер для связи по USB, новый Ардуино Uno использует микроконтроллер ATmega8U2 (техническое описание, pdf).

«Uno» переводится как один с итальянского и разработчики тем самым намекают на грядущий выход Arduino 1.0. Новая плата стала флагманом линейки плат Ардуино. Для сравнения с предыдущими версиями можно обратиться к полному списку плат Arduino.

Характеристики
Схема и исходные данные
Питание

Arduino Uno может получать питание через подключение USB или от внешнего источника питания. Источник питания выбирается автоматически.

Внешнее питание (не USB) может подаваться через преобразователь напряжения AC/DC (блок питания) или аккумуляторной батареей. Преобразователь напряжения подключается посредством разъема 2.1 мм с центральным положительным полюсом. Провода от батареи подключаются к выводам Gnd и Vin разъема питания.

Платформа может работать при внешнем питании от 6 В до 20 В. При напряжении питания ниже 7 В, вывод 5V может выдавать менее 5 В, при этом платформа может работать нестабильно. При использовании напряжения выше 12 В регулятор напряжения может перегреться и повредить плату. Рекомендуемый диапазон от 7 В до 12 В.

  • VIN. Вход используется для подачи питания от внешнего источника (в отсутствие 5 В от разъема USB или другого регулируемого источника питания). Подача напряжения питания происходит через данный вывод.
  • 5V. Регулируемый источник напряжения, используемый для питания микроконтроллера и компонентов на плате. Питание может подаваться от вывода VIN через регулятор напряжения, или от разъема USB, или другого регулируемого источника напряжения 5 В.
  • 3V3. Напряжение на выводе 3.3 В генерируемое встроенным регулятором на плате. Максимальное потребление тока 50 мА.
  • GND. Выводы заземления.
Память

Микроконтроллер ATmega328 располагает 32 кБ флэш памяти, из которых 0.5 кБ используется для хранения загрузчика, а также 2 кБ ОЗУ (SRAM) и 1 Кб EEPROM.(которая читается и записывается с помощью библиотеки EEPROM).

Входы и Выходы

Каждый из 14 цифровых выводов Uno может настроен как вход или выход, используя функции pinMode(), digitalWrite(), и digitalRead(), . Выводы работают при напряжении 5 В. Каждый вывод имеет нагрузочный резистор (по умолчанию отключен) 20-50 кОм и может пропускать до 40 мА. Некоторые выводы имеют особые функции:

  • Последовательная шина: 0 (RX) и 1 (TX). Выводы используются для получения (RX) и передачи (TX) данных TTL. Данные выводы подключены к соответствующим выводам микросхемы последовательной шины ATmega8U2 USB-to-TTL.
  • Внешнее прерывание: 2 и 3. Данные выводы могут быть сконфигурированы на вызов прерывания либо на младшем значении, либо на переднем или заднем фронте, или при изменении значения. Подробная информация находится в описании функции attachInterrupt().
  • ШИМ: 3, 5, 6, 9, 10, и 11. Любой из выводов обеспечивает ШИМ с разрешением 8 бит при помощи функции analogWrite().
  • SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). Посредством данных выводов осуществляется связь SPI, для чего используется библиотека SPI.
  • LED: 13. Встроенный светодиод, подключенный к цифровому выводу 13. Если значение на выводе имеет высокий потенциал, то светодиод горит.

На платформе Uno установлены 6 аналоговых входов (обозначенных как A0 .. A5), каждый разрешением 10 бит (т.е. может принимать 1024 различных значения). Стандартно выводы имеют диапазон измерения до 5 В относительно земли, тем не менее имеется возможность изменить верхний предел посредством вывода AREF и функции analogReference(). Некоторые выводы имеют дополнительные функции:

  • I2C: 4 (SDA) и 5 (SCL). Посредством выводов осуществляется связь I2C (TWI), для создания которой используется библиотека Wire.

Дополнительная пара выводов платформы:

  • AREF. Опорное напряжение для аналоговых входов. Используется с функцией analogReference().
  • Reset. Низкий уровень сигнала на выводе перезагружает микроконтроллер. Обычно применяется для подключения кнопки перезагрузки на плате расширения, закрывающей доступ к кнопке на самой плате Arduino.

Обратите внимание на соединение между выводами Arduino и портами ATmega328.

Связь

На платформе Arduino Uno установлено несколько устройств для осуществления связи с компьютером, другими устройствами Arduino или микроконтроллерами. ATmega328 поддерживают последовательный интерфейс UART TTL (5 В), осуществляемый выводами 0 (RX) и 1 (TX). Установленная на плате микросхема ATmega8U2 направляет данный интерфейс через USB, программы на стороне компьютера «общаются» с платой через виртуальный COM порт. Прошивка ATmega8U2 использует стандартные драйвера USB COM, никаких стороних драйверов не требуется, но на Windows для подключения потребуется файл ArduinoUNO.inf. Мониторинг последовательной шины (Serial Monitor) программы Arduino позволяет посылать и получать текстовые данные при подключении к платформе. Светодиоды RX и TX на платформе будут мигать при передаче данных через микросхему FTDI или USB подключение (но не при использовании последовательной передачи через выводы 0 и 1).

Библиотекой SoftwareSerial возможно создать последовательную передачу данных через любой из цифровых выводов Uno.

ATmega328 поддерживает интерфейсы I2C (TWI) и SPI. В Arduino включена библиотека Wire для удобства использования шины I2C.

Программирование

Платформа программируется посредством ПО Arduino. Из меню Tools > Board выбирается «Arduino Uno» (согласно установленному микроконтроллеру). Подробная информация находится в справочнике и инструкциях.

Микроконтроллер ATmega328 поставляется с записанным загрузчиком, облегчающим запись новых программ без использования внешних программаторов. Связь осуществляется оригинальным протоколом STK500.

Имеется возможность не использовать загрузчик и запрограммировать микроконтроллер через выводы ICSP (внутрисхемное программирование). Подробная информация находится в данной инструкции.

Автоматическая (программная) перезагрузка

Uno разработана таким образом, чтобы перед записью нового кода перезагрузка осуществлялась самой программой Arduino на компьютере, а не нажатием кнопки на платформе. Одна из линий DTR микросхемы ATmega8U2, управляющих потоком данных (DTR), подключена к выводу перезагрузки микроконтроллеру ATmega328 через 100 нФ конденсатор. Активация данной линии, т.е. подача сигнала низкого уровня, перезагружает микроконтроллер. Программа Arduino, используя данную функцию, загружает код одним нажатием кнопки Upload в самой среде программирования. Подача сигнала низкого уровня по линии DTR скоординирована с началом записи кода, что сокращает таймаут загрузчика.

Функция имеет еще одно применение. Перезагрузка Uno происходит каждый раз при подключении к программе Arduino на компьютере с ОС Mac X или Linux (через USB). Следующие полсекунды после перезагрузки работает загрузчик. Во время программирования происходит задержка нескольких первых байтов кода во избежание получения платформой некорректных данных (всех, кроме кода новой программы). Если производится разовая отладка скетча, записанного в платформу, или ввод каких-либо других данных при первом запуске, необходимо убедиться, что программа на компьютере ожидает в течение секунды перед передачей данных.

На Uno имеется возможность отключить линию автоматической перезагрузки разрывом соответствующей линии. Контакты микросхем с обоих концов линии могут быть соединены с целью восстановления. Линия маркирована «RESET-EN». Отключить автоматическую перезагрузку также возможно подключив резистор 110 Ом между источником 5 В и данной линией.

Токовая защита разъема USB

В Arduino Uno встроен самовостанавливающийся предохранитель (автомат), защищающий порт USB компьютера от токов короткого замыкания и сверхтоков. Хотя практически все компьютеры имеют подобную защиту, тем не менее, данный предохранитель обеспечивает дополнительный барьер. Предохранитель срабатыват при прохождении тока более 500 мА через USB порт и размыкает цепь до тех пока нормальные значения токов не будут востановлены.

Физические характеристики

Длина и ширина печатной платы Uno составляют 6.9 и 5.3 см соответственно. Разъем USB и силовой разъем выходят за границы данных размеров. Четыре отверстия в плате позволяют закрепить ее на поверхности. Расстояние между цифровыми выводами 7 и 8 равняется 0,4 см, хотя между другими выводами оно составляет 0,25 см.

Распиновка плат ардуино Arduino board pinmaping

Arduino — это эффективное средство разработки программируемых электронных устройств, которые, в отличие от персональных компьютеров, ориентированы на тесное взаимодействие с окружающим миром. Ардуино — это открытая программируемая аппаратная платформа для работы с различными физическими объектами и представляет собой простую плату с микроконтроллером, а также специальную среду разработки для написания программного обеспечения микроконтроллера.

Ардуино может использоваться для разработки интерактивных систем, управляемых различными датчиками и переключателями. Такие системы, в свою очередь, могут управлять работой различных индикаторов, двигателей и других устройств. Проекты Ардуино могут быть как самостоятельными, так и взаимодействовать с программным обеспечением, работающем на персональном компьютере (например, приложениями Flash, Processing, MaxMSP). Любую плату Ардуино можно собрать вручную или же купить готовое устройство; среда разработки для программирования такой платы имеет открытый исходный код и полностью бесплатна.

Читать еще:  Как правильно изготовить электрический плиткорез из болгарки

Язык программирования Ардуино является реализацией похожей аппаратной платформы «Wiring», основанной на среде программирования мультимедиа «Processing».

Почему именно Arduino?

Существует множество других микроконтроллеров и микропроцессорных устройств, предназначенных для программирования различных аппаратных средств: Parallax Basic Stamp, Netmedia’s BX-24, Phidgets, MIT’s Handyboard и многие другие. Все эти устройства предлагают похожую функциональность и призваны освободить пользователя от необходимости углубляться в мелкие детали внутреннего устройства микроконтроллеров, предоставив ему простой и удобный интерфейс для их программирования. Ардуино также упрощает процесс работы с микроконтроллерами, но в отличие от других систем предоставляет ряд преимуществ для преподавателей, студентов и радиолюбителей:

Компактные платы ардуино :

Ардуино Нано

Платформа Nano, построенная на микроконтроллере ATmega328 (Arduino Nano 3.0) или ATmega168 (Arduino Nano 2.x), имеет небольшие размеры и может использоваться в лабораторных работах. Она имеет схожую с Arduino Duemilanove функциональность, однако отличается сборкой. Отличие заключается в отсутствии силового разъема постоянного тока и работе через кабель Mini-B USB. Nano разработана и продается компанией Gravitech.
Наверное одна из лучших и компактных плат для различных проектов и самоделок , обычно выбираю её :

Лучшая цена на алиэкспресс http://ali.pub/1tgxgp

Партия из 5 штук — дешевле http://ali.pub/1tgxho

Ардуино про мини


Arduino pro micro

Плата Arduino Pro Micro построена на микроконтроллере ATmega32U4, что позволило не применяя конвертер USB-UART подключать плату в USB-порту компьютера. Это исключает необходимость применения программатора для записи скетча в плату.

  • частота: 16МГц
  • 4 канала АЦП (10 бит)
  • 10 портов ввода-вывода общего назначения (из них 5 с ШИМ)
  • выводы Rx/Tx
  • светодиоды: питание, Rx, Tx

Плата имеет регулятор напряжения, что позволяет использовать питание до 12В (вывод RAW, не VCC!)


Полноразмерные платы ардуино

Ардуино Уно

Arduino Uno контроллер построен на ATmega328 (техническое описание , pdf). Платформа имеет 14 цифровых вход/выходов (6 из которых могут использоваться как выходы ШИМ), 6 аналоговых входов, кварцевый генератор 16 МГц, разъем USB, силовой разъем, разъем ICSP и кнопку перезагрузки.


Ардуино DUE
Общие сведения

Arduino Due — плата микроконтроллера на базе процессора Atmel SAM3X8E ARM Cortex-M3 (описание). Это первая плата Arduino на основе 32-битного микроконтроллера с ARM ядром. На ней имеется 54 цифровых вход/выхода (из них 12 можно задействовать под выходы ШИМ), 12 аналоговых входов, 4 UARTа (аппаратных последовательных порта), a генератор тактовой частоты 84 МГц, связь по USB с поддержкой OTG, 2 ЦАП (цифро-аналоговых преобразователя), 2 TWI, разъем питания, разъем SPI, разъем JTAG, кнопка сброса и кнопка стирания.

Внимание! В отличие от других плат Arduino, Arduino Due работает от 3,3 В. Максимальное напряжение, которое выдерживают вход/выходы составляет 3,3 В. Подав более высокое напряжение, например, 5 В, на выводы Arduino Due, можно повредить плату.

Плата содержит все, что необходимо для поддержки микроконтроллера. Чтобы начать работу с ней, достаточно просто подключить её к компьютеру кабелем микро-USB, либо подать питание с AC/DC преобразователя или батарейки. Due совместим со всеми платами расширения Arduino, работающими от 3,3 В, и с цоколевкой Arduino 1.0.

Arduino ESPLORA

Общие сведения

Arduino Esplora — это микропроцессорное устройство, спроектированное на основе Arduino Leonardo . Esplora отличается от всех предыдущих плат Arduino наличием множества встроенных, готовых к использованию датчиков для взаимодействия. Он спроектирован для тех, кто предпочитает сразу начать работу с Ардуино, не изучая перед этим электронику. Пошаговую инструкцию к Esplora вы сможете найти в руководстве Начало работы с Esplora .

Esplora имеет встроенные звуковые и световые индикаторы (для вывода информации), а также несколько датчиков (для ввода информации), таких, как джойстик, слайдер, датчик температуры, акселерометр, микрофон и световой датчик. Помимо этого, на плате есть два входных и выходных разъема Tinkerkit, а также гнездо для подключения жидкокристаллического TFT-экрана, позволяющие значительно расширить возможности устройства.

Как и на плате Leonardo, в Esplora используется AVR-микроконтроллер ATmega32U4 с кварцевым резонатором 16 МГц, а также разъем микро-USB, позволяющий устройству быть USB-гаджетом, подобно мыши или клавиатуре.

Arduino YUN
Arduino Yun – отладочная плата на базе микроконтроллера ATmega32u4 и Atheros AR9331. Процессор Atheros поддерживает дистрибутив Linux, основанный на базе OpenWrt и называемый OpenWrt-Yun. Плата имеет встроенную поддержку Ethernet и WiFi, порт USB-A, слот для карты micro-SD, 20 цифровых входных/выходных выводов (из которых 7 могут использоваться в качестве ШИМ выходов, а 12 – в качестве аналоговых входов), кварцевый резонатор 16 МГц, соединение microUSB, разъем ICSP и 3 кнопки перезагрузки.
Купить на Алиэкспресс http://ali.pub/1tgz6c

Заказываешь на Aliexpress ?Узнай как экономить покупая на али кэшбек

Кнопка

Кнопки очень часто используются в электронике. На первый взгляд, работа с ними не таит сюрпризов, но и тут есть «подводные камни».

Хотя у кнопки есть четыре ножки, фактически можно рассматривать их два участка цепи, который замыкается сверху. Следите за правильностью подключения, чтобы цепь была корректной.

Подключим кнопку без использования контроллера, пропустив ток из 5V. При нажатии кнопки цепь замкнётся и светодиод будет светиться. Ничего неожиданного.

В реальности нам нужно считывать сигнал с кнопки и реагировать на него. Поэтому попробуем изменить схему. Соединим один вывод кнопки с питанием и выводом 3 на плате. С вывода 3 мы будем считывать информацию: логический ноль или логическая единица. При нажатии на кнопку цепь замыкается, на выводе 3 будет логическая единица и мы включим светодиод.

Код прекрасно работает при нажатии кнопки. А когда мы отпускаем кнопку и создаём разрыв в цепи, то возникает проблема. Вывод 12 становится свободным и висит в неопределённом состоянии в режиме INPUT (вспоминаем урок про цифровые выводы). В результате мы получаем случайные значения и светодиод то включается, то выключается от наводок.

Чтобы избежать этой проблемы, можно добавить резистор от 10 до 100 кОм и прижать кнопку к земле. В этом случае цепь будет замкнута даже при отпущенной кнопке. В этом случае резистор называют стягивающим (pull down). Это рабочая схема, которую можно использовать в учебной программе.

Несмотря на рабочую схему с стягивающим резистором, мы получаем проблему при работе со сложным проектом. Дело в том, что возможна ситуация, когда многие устройства в схеме используют разные значения питания. И тогда придётся к каждой кнопке устройства подавать свой отдельный стягивающий резистор. На практике принято подключаться не к питанию, а к земле, которая всегда одинакова и равно 0. В этом случае сам резистор следует подключить к питанию — подтянуть. Резистор в этом случае является подтягивающим (pull up). Правда, при этом возникает другая проблема — поведение светодиода изменилось противоположным образом — при нажатии светодиод выключается, а при отпускании — включается. Решается проблема просто — меняем одну строчку кода.

Мы просто меняем значение переменной на противоположное. Это стандартный подход при работе с кнопкой. Теперь вам будет легче разобраться с примерами из Arduino IDE.

Стоит отметить, что у платы Arduino у выводов уже есть встроенные подтягивающие резисторы (кроме вывода 13) и мы можем убрать внешний резистор. Но тогда надо также явно указать использование данного резистора через код с параметром INPUT_PULLUP.

01.Basics: DigitalReadSerial (Чтение цифрового вывода)

Изучим пример DigitalReadSerial из File | Examples | 01.Basics.

Мы изучили, как правильно подключать кнопку и можем изучать встроенные примере. Будем считывать сигнал, идущий с цифрового вывода при нажатии кнопки.

Приблизительно собранная схема может выглядеть следующим образом:

Вкратце опишу на словах данную схему. Вставляем в центре макетной платы кнопку таким образом, чтобы между парными ножками проходил жёлоб макетной платы. Далее соединяем перемычками питание 5V и землю GND на Arduino с рельсами на макетной плате. Потом соединяем перемычкой цифровой вывод под номером 2 на Arduino с одной ножкой кнопки на макетной плате. Эту же ножку кнопки, но с другой стороны соединяем с резистором, который выполняет роль стягивающего резистора. После чего сам резистор соединяем с землёй. Третью ножку кнопки соединяем к положительной рельсе на макетной плате. Осталось только соединить между собой боковые рельсы на макетной плате, и мы готовы изучать новый пример.

Кнопка выполняет очень важную функцию — она замыкает цепь при нажатии. Когда кнопка не нажата, то ток не проходит между ножками кнопки, и не можем поймать сигнал с цифрового вывода под номером 2. Поэтому состояние вывода определяется системой как LOW или 0. При нажатии на кнопку его две ножки соединяются, позволяя току пройти от питания к цифровому выводу 2, а система считывает проходящий сигнал как HIGH или 1.

Читать еще:  Рейтинг самых надежных перфораторов для дома в 2020 году

Разберём код по кусочкам

В функции setup() устанавливаем связь с портом для считывания данных на скорости 9600 бит в секунду с Arduino на ваш компьютер: Serial.begin(9600).

Вторая строчка нам уже знакома, но здесь теперь используется параметр INPUT — мы устанавливаем второй цифровой вывод на режим чтения данных, поступающих с кнопки: pinMode(pushButton, INPUT);

В цикле считываем поступающую информацию. Для начала нам понадобится новая переменная buttonState, которая будет содержать значения 0 или 1, поступающие от функции digitalRead().

Чтобы мы могли видеть поступающую информацию, нужно вывести получаемые результаты в окно Serial Monitor при помощи команды println().

Для большей стабильности при чтении данных установим минимальную задержку.

Если вы сейчас запустите программу и откроете также окно Serial Monitor (меню Tools | Serial Monitor), то на экране увидите бесконечные нули. Программа постоянно опрашивает состояние нашей конструкции и выводит результат — отсутствие тока. Если нажать на кнопку и удерживать её, то увидите, что цифры сменяются с 0 на 1. Значит в нашей цепи появился ток и информация изменилась.

02.Digital: Button

Работа с кнопкой рассматривается также в примере File | Examples | 02.Digital | Button. Кнопка соединяется с выводом 2, а светодиод с выводом 13. К кнопке также следует подвести питание и землю через резистор на 10K. Сам принцип работы остался без изменений. Только на этот раз мы не будем выводить информацию о состоянии кнопки на экран, а будем включать светодиод. Такой вариант более наглядный. При нажатии и отпускании кнопки встроенный светодиод должен загораться или гаснуть.

Допустим, мы хотим изменить поведение — если кнопка не нажата — светодиод горит, а при нажатии — светодиод не горит. Достаточно изменить одну строчку кода.

А теперь загадка! Вы загрузили первый вариант скетча на плату, и вдруг ваш компьютер сломался. Вы не можете отредактировать скетч, чтобы использовать второй вариант. Как можно выйти из положения?

Нужно поменять полярность цепи! Провод от резистора, который на землю, нужно воткнуть в 5V, а провод, который шёл из 5V к кнопке, перекинуть на землю. При включении ток пойдёт из питания на вывод 2 без всяких помех и будет получено значение HIGH. При нажатии кнопки получится другая цепь, и вывод 2 останется без питания.

02.Digital: StateChangeDetection

В примере File | Examples | 02.Digital | StateChangeDetection идёт подсчёт щелчков кнопки и состояние кнопки (включён или выключен). Схема осталась прежней. Кнопка соединяется с выводом 2, а светодиод с выводом 13 (можно использовать встроенный). К кнопке также следует подвести питание и стягивающий резистор к земле на 10K.

02.Digital: Debounce (Дребезг)

У кнопок существует такой эффект, как «дребезг». При замыкании и размыкании между пластинами кнопки возникают микроискры, провоцирующие до десятка переключений за несколько миллисекунд. Явление называется дребезгом (англ. bounce). Это нужно учитывать, если необходимо фиксировать «клики». Поэтому первичным показаниям верить нельзя. По этой причине часто в скетчах делают небольшую задержку, а уже потом считывают показания. В обычном состоянии, когда мы не нажимаем кнопку или держим кнопку нажатой, эффекта дребезга не наблюдается. Иногда для этих целей в учебных примерах используют функцию delay(), но на практике следует использовать функцию millis(), как в примере File | Examples | 02.Digital | Debounce. Схема подключения остаётся без изменений.

02.Digital: DigitalInputPullup (Встроенный подтягивающий резистор)

У цифровых выводов уже есть резисторы на 20 кОм, которые можно использовать в качестве подтягивающих при работе с кнопками. Рассмотрим пример File | Examples | 02.Digital | DigitalInputPullup.

Схема подключения — соединим первый вывод кнопки с выводом 2 на плате, а второй вывод кнопки с выводом GND. Во время работы скетча будем считывать показания второго вывода.

Если запустить скетч, то увидим, что на монитор выводятся числа 1 (HIGH). При нажатии на кнопку значения поменяются на 0 (LOW).

Урок 15. Bluetooth модуль HC-06 подключение к Arduino. Управление устройствами с телефона.

Очень часто в ваших проектах возникает необходимость в дистанционном управлении или передачи данных с ваших телефонных гаджетов.

Один из самых популярных и распространенных методов обмена данными посредством Bluetooth.

Сегодня мы разберем простые примеры как можно подключить Bluetooth модуль к Arduino и настроить дистанционное управление с телефона.

Нам понадобится:

Схема подключения Bluetooth к Arduino:

Подключать Bluetooth модуль к микроконтроллеру Arduino удобнее всего с помощью проводков ПАПА-МАМА.

ArduinoBluetooth
Pin 1 (TX)RXD
Pin 0 (RX)TXD
GNDGND
5VVCC

Будьте внимательны, подключать подключать нужно TX -> RXD ,RX -> TXD.

Теперь необходимо записать пробный код программы:

Во время загрузки скетча необходимо что бы Bluetooth модуль был отключен от микроконтроллера arduino. В противном случае скетч не запишется, потому что связь с Bluetooth модулем происходит по одному и томуже порту RX и TX, что и USB.

Скачать скетч можно по ссылке.

После того как скетч записан и Bluetooth модуль подключен к Arduino, можно перейти к следующему шагу.

Подключение Bluetooth к телефону

Желательно в качестве источника питания для arduino использовать не USB, а внешний Блок питания на 9 В.

  1. Включаем Bluetooth на телефоне и ищем новые устройства
  2. Находим в списке расстройств «HC-06″ и подключаемся к нему.
  3. Телефон спросит пин-код. необходимо ввести «1234» или «0000«
  4. Ура. Устройство подключено.

Теперь нужно скачать bluetooth terminal на ваш телефон. Мы рассмотрим на примере платформы Android.

Вы можете установить разные bluetooth терминалы, как правило они отличаются только разными дизайнами, функционал от этого не меняется. Так же можно найти и терминал и для продуктов ios.

После того как мы установили терминал, запускаем его выбираем наш bluetooth модуль HC-06 и подключаемся к нему.

Пришло время попробовать проект в деле. Пишем в терминале цифру «0» и отправляем. Светодиод L который находится на плате arduino рядом с pin 13, должен погаснуть. Теперь отправим через терминал цифру «1» и светодиод L должен зажечься.

Демонстрация работы:


Домашняя работа:

  • Изменить скетч так, что бы светодиод зажигался и потухал с помощью одной и той же команды например «G».
  • Дописать скетч и научить его преобразовывать текстовые данные приходящие через блютус в цифровые и реализовать димер, зажигать светодиод с помощью ШИМ, на заданную яркость от 0 до 254 приходящую через bluetooth.

Плата Arduino Uno – описание, схема, распиновка

Arduino Uno – плата от компании Arduino, построенная на микроконтроллере ATmega 328.

Плата имеет на борту 6 аналоговых входов, 14 цифровых выводов общего назначения (могут являться как входами, так и выходами), кварцевый генератор на 16 МГц, два разъема: силовой и USB, разъем ISCP для внутрисхемного программирования и кнопку горячей перезагрузки устройства. Для стабильной работы плату необходимо подключить к питанию либо через встроенный USB Разъем, либо подключив разъем питания к источнику от 7 до 12В. Через переходник питания плата также может работать и от батареи формата Крона.

Основное отличие платы от предыдущих – для взаимодействия по USB Arduino Uno использует отдельный микроконтроллер ATmega8U2. Прошлые версии Arduino использовали для этого микросхему программатора FTDI.

Несложно догадаться, что благодаря своему итальянскому происхождению, слова “Arduino” и “Uno” взяты именно из этого языка. Компания назвалась “Arduino” в честь короля Италии 11 века Ардуина, а Уно переводится с итальянского как “первый”.

Размеры и габариты платы

Печатная плата Arduino Uno является Open-Hardware, поэтому все ее характеристики доступны в открытом доступе.

Длина и ширина платы составляют 69 мм x 53 мм.

Силовой и USB разъемы выступают за границы печатной платы на 2 мм.

Расстояние между выводами соответствует стандарту 2.54 мм, однако расстояние между 7 и 8 контактами составляет 4 мм.

Разъемы питания

Плата Arduino Uno имеет на борту 3 способа подключения питания: через USB, через внешний разъем питания и через разъем Vin, выведенный на одну из гребенок сбоку. Платформа имеет на борту встроенный стабилизатор, позволяющий не только автоматически выбирать источник питания, но и выравнивать ток до стабильных 5 вольт, необходимых контроллеру для работы.

Внешнее питание можно подавать как напрямую от USB порта компьютера, так и от любого AC/DC блока питания через разъем питания или USB.

На плате предусмотрено несколько выводов, позволяющих запитывать от нее подключенные датчики, сенсоры и актуаторы. Все эти выводы помечены:

  • Vin – вход питания, используется для получения питания от внешнего источника. Через данных вывод происходит только подача питания на плату, получить оттуда питание для внешних устройств невозможно. На вход Vin рекомендуется подавать напряжение в диапазоне от 7В до 20В, во избежании перегрева и сгорания встроенного стабилизатора.
  • 5V – источник пятивольтового напряжения для питания внешних устройств. При получении питания платой из любых других источников (USB, разъем питания или Vin) на этом контакте вы всегда сможете получить стабильное напряжение 5 вольт. Его можно вывести на макетную плату или подать напрямую на необходимое устройство.
  • 3V3 – источник 3.3 вольтового напряжения для питания внешних устройств. Работает по такому-же принципу, что и контакт 5V. С данной ножки также можно вывести напряжение на макетную плату, либо подать на необходимый датчик/сенсор напрямую.
  • GND – контакт для подключения земли. Необходим для создания замкнутой цепи при подключении к контактам Vin, 5V или 3V3. Во всех случаях ножку GND необходимо выводить как минус, иначе цепь не будет замкнута и питание (что внешнее, что внутреннее) не подасться.

Характеристики памяти

Платформа Arduino Uno имеет на борту микроконтроллер ATmega328, который обладает Flash, SRAM и EEPROM памятью.

  • FLASH – 32kB, из которых 0.5kB используется для хранения загрузчика
  • SRAM (ОЗУ) – 2kB
  • EEPROM – 1kB (доступна с помощью библиотеки EEPROM)

ОБОРУДОВАНИЕ
ТЕХНОЛОГИИ
РАЗРАБОТКИ

Блог технической поддержки моих разработок

Урок 45. Другие платы Ардуино с микроконтроллерами ATmega168/328. Плата Arduino Nano.

В последующих двух уроках расскажу о платах Ардуино функционально полностью совместимых с Arduino UNO R3, но имеющих другое конструктивное исполнение.

Плата Arduino UNO, наверное, имеет наибольшую популярность среди разработчиков электронных изделий на базе Ардуино. Она идеально подходит для отладки программной и аппаратной частей устройств на этапе разработки.

Но для завершенных устройств, а тем более при серийном выпуске ее положительные качества скорее превращаются в недостатки.

  • Плата Arduino UNO имеет небольшие размеры (69 x 54 мм), но ее некоторая избыточность позволяет в разы уменьшить размеры других вариантов плат. Например, у платы Arduino Pro Mini габариты всего 18 x 33 мм. Существует множество практических приложений, где размеры электроники играют решающее значение.
  • Подключение внешних сигналов к плате Arduino UNO происходит через разъемы. На этапе разработки это скорее плюс. А в готовом изделии разъемы резко снижают надежность устройства. При тяжелых условиях эксплуатации (вибрации, повышенная влажность и т.п.) разъемы платы Arduino UNO практически неработоспособны.
  • Плата Arduino UNO содержит преобразователь интерфейсов для подключения к компьютеру через порт USB. Но далеко не для всех устройств необходима связь с компьютером. Опять, то, что совершенно необходимо при отладке, оказывается лишним в рабочем устройстве.
  • Все перечисленное выше также влияет на стоимость платы Arduino UNO. Убрав лишнее, уменьшив размеры платы, появилась возможность снизить ее стоимость.

Речь идет о платах с теми же микроконтроллерами, имеющим те же характеристики, но с другими схемными и конструктивными решениями:

  • Arduino Nano;
  • Arduino Pro Mini.

Каждая из этих плат выпускается в двух вариантах с микроконтроллером ATmega328 и ATmega168. Во втором варианте в 2 раза уменьшаются объемы FLASH, ОЗУ и EEPROM.

Я собираюсь использовать эти платы в последующих уроках, поэтому решил рассказать о них.

Плата Arduino Nano.

Это небольшая плата размерами 19 x 43 мм. Тем не менее, по функциям и параметрам вполне заменяет Arduino UNO.

Как правило, не содержит разъемов для подключения внешних сигналов, но они легко могут быть запаяны.

У платы есть преобразователь интерфейса UART в USB и USB разъем для подключения к компьютеру.

Характеристики платы Arduino Nano.

Большая часть параметров платы определяется используемым микроконтроллером.

Тип микроконтроллераATmega168ATmega328
АрхитектураAVR
Напряжение питания микроконтроллера5 В
Номинальное напряжение питания платы7 – 12 В
Предельно-допустимое напряжение питания платы6 – 20 В
Тактовая частота16 мГц
Объем памяти программ (FLASH)16 кбайт32 кбайт
Объем оперативной памяти (SRAM)1 кбайт2 кбайт
Объем энергонезависимой памяти (EEPROM)512 байт1 кбайт
Дискретные входы/выходы14 выводов ( 6 могут быть использованы для генерации ШИМ)
Аналоговые входы8 входов
Предельно-допустимый ток цифрового выхода40 мА (но не более 200 мА для всех выводов)
Ток потребленияНе более 20 мА
Размеры платы18,5 x 43 мм
Вес7 г

Назначение выводов платы Arduino Nano.

Питание.

Плата может получать питание двумя способами:

  • через кабель связи с компьютером от USB порта;
  • от внешнего источника питания напряжением 6-20 В. Напряжение может быть не стабилизировано, но с низким уровнем пульсаций.

Напряжение внешнего источника питания стабилизируется на уровне 5 В с помощью микросхемы LM1117IMPX-5.0. Напряжение USB порта компьютера подключается к выходу стабилизатора через диод Шоттки (с низким падением напряжения).

Таким образом, при одновременном подключении обоих источников плата питается от источника с большим напряжением.

Вывод 5 V может быть использован для питания внешнего устройства. Надо только помнить, что ток нагрузки не должен превышать для разных плат 500-800 мА.

К выводу 3.3V можно подключать питание внешних устройств напряжением 3,3 В. У моей платы ток нагрузки не должен превышать 180 мА.

Входы и выходы платы.

  • Все выводы, цифровые и аналоговые, могут работать в диапазоне 0 … 5 В.
  • Максимальный вытекающий или втекающий ток для цифрового вывода в режиме выхода не должен превышать 40 мА. Общий ток выводов не должен превышать 200 мА.
  • Все выводы могут быть программно подключены к источнику питания микроконтроллера 5 В через подтягивающие резисторы сопротивлением 20-50 кОм.
  • Если на аналоговый вход или дискретный вывод в режиме входа подать напряжение свыше 5 В или ниже 0 В, то оно будет ограничено защитными диодами микроконтроллера.

В этих случаях сигнал должен подключаться через ограничительный резистор, иначе микроконтроллер может выйти из строя.

Цифровые выводы. У платы 14 цифровых выводов, каждый из которых может работать в режимах входа и выхода. Некоторые выводы имеют еще альтернативные функции.

Последовательный интерфейс UART: выводы 0(RX) и 1(TX). Используются для обмена данными по интерфейсу UART. Эти выводы платы непосредственно соединены с соответствующими выводами микроконтроллера. К ним же через резисторы сопротивлением 1 кОм подключены сигналы преобразователя интерфейса.

Таким образом, выводы платы имеют приоритет по отношению к сигналам преобразователя интерфейсов. При загрузке программы в плату или обмене данными с компьютером выводы RX и TX должны оставаться свободными.

Внешние прерывания: выводы 2 и 3. Выводы, которые могут быть использованы для формирования внешних прерываний.

ШИМ: выводы 3,5,6,9, 10, 11. На этих выводах может быть сформирован сигнал ШИМ аппаратным способом.

Последовательный интерфейс SPI: выводы 10 (SS), 11 (MOSI), 13 (SCK). Выводы аппаратного интерфейса SPI.

Светодиод: вывод 13. К этому выводу подключен светодиод, обозначенный на плате L. Светится при высоком уровне сигнала.

Аналоговые входы: A0…A8. 8 аналоговых входов для измерения напряжения с помощью встроенного АЦП. Разрядность АЦП – 10 бит.

Интерфейс I2C: выводы 4 (SDA) и5 (SCL). Сигналы аппаратного интерфейса I2C.

AREF. Опорное напряжение для АЦП микроконтроллера. Определяет диапазон измерения напряжения на аналоговых входах.

RST. Сигнал сброса микроконтроллера. Низкий уровень приводит к перезагрузке системы.

Светодиоды.

На плате есть 4 светодиода, показывающие состояние сигналов.

Обозначение на платеПри каком уровне сигнала светитсяНазначение
TXнизкийСигнал TX активен
RXнизкийСигнал RX активен
PWR5 ВПитание есть
LвысокийСветодиод общего назначения

Загрузка программы в плату из Arduino IDE происходит традиционным способом.

Принципиальная схема платы Arduino Nano.

Схемы плат разных производителей могут отличаться. Чаще всего различия касаются преобразователя интерфейсов USB-UART.

В китайских клонах обычно используются мосты USB-UART микросхемы CH340G. В фирменных платах преобразователь интерфейсов выполнен на микросхеме FT232RL.

Вот схема такого варианта платы Arduino Nano.

Микроконтроллер включен по стандартной схеме. Систему питания я уже объяснил.

Преобразователь интерфейсов FT232RL также включен по стандартной схеме. Сигнал DTR соединен через конденсатор емкостью 0,1 мкФ с выводом Reset микроконтроллера для формирования сигнала сброса при загрузке программы из Arduino IDE.

В следующем уроке я расскажу еще об одной плате на микроконтроллерах ATmega168/328. Об одной из самых миниатюрных плат — Arduino Pro Mini.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector